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Özgür Dagdelen, Technische Universität Darmstadt, Germany
Andrej Dujella, University of Zagreb, Croatia
Otokar Grosek, Slovak University of Technology in Bratislava
Marek Klonowski, Wroclaw University of Technology, Poland
Tanja Lange, Technische Universiteit Eindhoven, Netherlands
Spyros S. Magliveras, Florida Atlantic University, USA
Florian Mendel, Graz University of Technology, Austria
Karol Nemoga, Slovak Academy of Sciences
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Conference Programme

Day 1: Wednesday, July 08, 2015

08:30 – 09:15 Registration

09:15 – 09:30 Welcome session

09:30 – 10:20 Keynote 1: Andrey Bogdanov

Symmetric-Key Cryptography in Untrusted Environments

10:30 – 11:00 Coffee break

Session 1 (11:00 – 12:15, Chair: Karol Nemoga)

11:00 – 11:20 Stefan Rass, Peter Schartner, Markus S. Wamser

Oblivious Lookup Tables

11:25 – 11:45 Tomas Fabsic, Otokar Grosek, Karol Nemoga, Pavol Zajac

On Constructing Invertible Circulant Binary (n × n)-Matrices with n2

2
Ones

11:50 – 12:10 Georg Fuchsbauer, Christian Hanser, Daniel Slamanig

Structure-Preserving Signatures on Equivalence Classes

12:15 – 13:45 Lunch break

Session 2 (13:45 – 15:00, Chair: Otokar Grosek)

13:45 – 14:05 Noora Nieminen, Valtteri Niemi, Tommi Meskanen

Side-Information in Garbling

14:10 – 14:30 Michala Gulasova, Matus Jokay

Stegoanalysis of StegoStorage System

14:35 – 14:55 Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor
Ruzhentsev, Yurii Gorbenko, Viktor Dolgov

A New Encryption Standard of Ukraine: The Block Cipher Kalyna

15:00 – 15:30 Coffee break

15:30 – 16:20 Keynote 2: Vincent Rijmen

Threshold implementations

Session 3 (16:30 – 17:20, Chair: Andrey Bogdanov)

16:30 – 16:50 Iwona Polak, Mariusz Boryczka

Breaking RC4 Using Genetic Algorithm

16:55 – 17:15 Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer

Ascon, a Submission to CAESAR
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Day 2: Thursday, July 09, 2015

09:30 – 10:20 Keynote 3: Eran Tromer and Daniel Genkin

Physical Side Channel Attacks on PCs

10:30 – 11:00 Coffee break

Session 4 (11:00 – 12:15, Chair: Vincent Rijmen)

11:00 – 11:20 Sara Kropf, Clemens Heuberger

Scalar Multiplication on Elliptic Curves Using the Binary Asymmetric
Joint Sparse Form

11:25 – 11:45 Daniel Krenn, Clemens Heuberger

Properties of τ -adic Digit Expansions for Fast Scalar Multiplication

11:50 – 12:10 Michela Mazzoli

Non-commutative Digit Expansions for Arithmetic on Supersingular El-
liptic Curves

12:15 – 13:45 Lunch break

Session 5 (13:45 – 15:00, Chair: Christian Hanser)

13:45 – 14:05 Martin Deutschmann, Sandra Lattacher, Michael Höberl, Christina
Petschnigg, Naeim Safari

Quality Limitations on the Extraction of a PUF-based Cryptographic Key

14:10 – 14:30 László Mérai, Arne Winterhof

On the Linear Complexity Profile of Certain Sequences Derived from El-
liptic Curves

14:35 – 14:55 Raivis Bēts, Jānis Buls

WELLDOC Property in Bi-ideals

15:00 – 15:30 Coffee break

Session 6 (15:30 – 17:10, Chair: Keith Martin)

15:30 – 15:50 Géza Horváth, Pál Dömösi, József Gáll

Statistical Analysis of a Novel Cryptosystem Based on Automata Compo-
sitions

15:55 – 16:15 Haydar Demirhan, Nihan Bitirim

Hypothesis Testing and Multiplicity in the Evaluation of Cryptographic
Randomness

16:20 – 16:40 Mateusz Buczek

Cryptanalysis of POLAWIS

16:45 – 17:05 Pavol Zajac, Viliam Hromada, Ladislav Ollos

A Few Notes on Algebraic Cryptanalysis

18:30 Conference dinner at the restaurant “Uni-Wirt”, Nautilusweg 11
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Day 3: Friday, July 10, 2015

09:30 – 10:20 Keynote 4: Keith Martin

Researching Cryptography: Reflections on Theory versus Practice

10:30 – 11:00 Coffee break

Session 7 (11:00 – 12:15, Chair: Daniel Genkin)

11:00 – 11:20 Máté Horváth

Revocation in Distributed ABE-based Secure Storage Using Indistinguisha-
bility Obfuscation

11:25 – 11:45 Renata Kawa, Mieczys law Kula

Access Structures Induced by Uniform Polymatroids

11:50 – 12:10 Péter Ligeti

On Complexity of Secret Sharing Schemes on Access Structures with Rank
Three

12:15 – 12:30 Farewell

12:30 Lunch
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Keynote Talks

Symmetric-Key Cryptography in Untrusted Environments

Andrey Bogdanov, Technical University of Denmark

Traditionally, symmetric-key algorithms have been designed under the assumption that the com-
putational environment is trustworthy. However, in the real world, computing bases can be com-
promised – e.g. due to malware, hardware Trojans, physical side channels, memory leakage, etc.
Among others, recent revelations by the former CIA employee and NSA contractor Edward Snow-
den confirm the existence of global mass surveillance programs run by the U.S. government. This
much stronger adversary poses a novel challenge to cryptography and calls for countermeasures
that are able to thwart such attacks or at least to limit the damage.

This talk consists of three parts. First, we give a survey on the existing countermeasures
in grey-box and white-box settings, as opposed to the classical black-box setting. Second, we
propose a framework for modelling the stronger attacker that can have substantial control over
the execution environment, as applied to symmetric-key ciphers. Next, we analyse the residual
security of existing primitives such as AES in this setting. Finally, we approach the design of new
primitives that can provide more security in untrusted environments.

Threshold Implementations

Vincent Rijmen, Katholieke Universiteit Leuven

Side-channel attacks exploit weaknesses of the implementation of cryptographic transformations,
rather than mathematical weaknesses of the transformations themselves. The attacks form a real
threat to systems that are being used daily.

In the last two decades, several approaches have been proposed to achieve secure implementa-
tions. Almost all these approaches have been proven to be unsuccessful because they start from
assumptions on hardware and software computing platforms that are too idealised. In particular
transient effects have been neglected.

We proposed the Threshold Implementation approach, which takes into account the imperfec-
tions of current implementation technologies and still produces secure implementations. Since
the approach is based on multiparty computation techniques, it is possible to formally prove the
security.

In this talk, we first explain the threshold implementation approach. Subsequently we show its
central security theorem. Finally, we present the most recent developments.

Physical Side Channel Attacks on PCs

Eran Tromer and Daniel Genkin, Tel Aviv University

Can secret information be extracted from personal computers by measuring their physical prop-
erties from the outside? What would it take to extract whole keys from such fast and complex
devices? We present myriads way to do so, including:

• Acoustic key extraction, using microphones to record the high-pitched noise caused by
vibration of electronic circuit components during decryption.

• Electric key extraction exploiting fluctuations in the “ground” electric potential of com-
puters. An attacker can measure this signal by touching the computer’s chassis, or the
shield on the remote end of Ethernet, VGA or USB cables.
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• Electromagnetic key extraction, using a cheap radio to non-intrusively attack laptop com-
puters.

The talk will discuss the cryptanalytic, physical and signal-processing principles of the attacks,
and include live demonstrations.

Joint works with Adi Shamir, Eran Tromer, Lev Pachmanov and Itamar Pipman.
For further information see http://www.tau.ac.il/~tromer/leisec

Researching Cryptography: Reflections on Theory versus Practice

Keith Martin, Royal Holloway, University of London

For many centuries cryptography was a practical subject which was supported by very little back-
ground theory. The rise of computer networks and their applications has seen the importance of
cryptography as a practical subject rise to the point that it is now an everyday technology. Along-
side this cryptography has developed and, to an extent semi-matured, as a theoretical research
area. But does the theory always match the practice, and vice versa? And does it matter? In this
talk we reflect on these questions, while presenting a number of current research problems that
are motivated by the application of cryptography to the real world (wherever that is).
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Contributed Talks

Oblivious Lookup Tables

Stefan Rass, Universität Klagenfurt, Department of Applied Informatics

Joint work with Peter Schartner (Universität Klagenfurt, Department of Applied Informatics)
and Markus S. Wamser (Technical University of Munich, Institute for Security in Information

Technology)

We consider the following setting: let f : X → Y be a mapping between finite sets. Assume
that the sizes of X and Y are sufficiently small to permit a specification of f via a lookup
table. Let E(m,κ) denote a group-homomorphic encryption of a message m under a key κ,
where E can be symmetric or asymmetric. Let E be group-homomorphic in the sense that
E(m1 · m2, κ) = E(m1, κ) · E(m2, κ), where · denotes the respective group operations within
the plain- and ciphertext space.

In this setting, we consider the following question: given E and an encrypted value c = E(x, κ),
can we compute E(f(x), κ) without decrypting c? We call any such implementation of f an
Oblivious Lookup Table (OLT), as it shall effectively hide the evaluation of f , or equivalently,
evaluate f only on ciphertexts by virtue of conventional homomorphic encryption.

Becoming more specifically, let p = 2q + 1 be a safe prime (i.e., q is a prime too), and let
G ⊂ Zp denote the q-order subgroup generated by some element g ∈ Zp. We first describe
the lookup technique in plain form, and subsequently wrap the encryption around the necessary
operations.

Let X = {x1, . . . , xn} ⊆ G be an enumeration of (distinct) values to be looked up. To each such
element xi we associate a vector ~vi = (xki )n−1k=0 = (1, xi, x

2
i , . . . , x

n−1
i ). Notice that xi 6= xj whenever

i 6= j implies that the vectors ~v1, . . . , ~vn are all linearly independent, as they essentially form the

rows of a Vandermonde matrix ~V . Without loss of generality, let us assume |X| = n = |Y |,
say, by allowing multiple occurrences of the same element in Y in case that f is not injective.
Under this convention, let the (not necessarily pairwise distinct) elements of Y be enumerated as
Y = {y1, . . . , yn}.

We will construct the value of f(xi) by a scalar product of ~vi with a vector representation of

the lookup table. That is, the lookup table itself is a vector ~̀with the property that ~vTi · ~̀= f(xi)

for all i = 1, 2, . . . , n. To this end, let us choose an arbitrary but invertible matrix ~U ∈ Gn×n with

columns ~u1, . . . , ~un. Define the lookup table as ~̀ := ~U · ~α for some (yet to be determined) vector

~α = (α1, . . . , αn). Now, let us look at the scalar product of ~vi with ~U · ~α to yield f(xi) ∈ Zp. This
results in a linear equation α1(~vTi · ~u1) + α2(~vTi · ~u2) + · · · + αn(~vTi · ~un) = f(xi). Establishing
this condition for all i = 1, 2, . . . , n, we end up observing that, to find ~α, we need to solve the

linear system (~V · ~U) · ~α = (f(x1), . . . , f(xn))T for ~α. The coefficient matrix ~V · ~U is invertible by

construction, and hence we can easily look up values f(xi) by computing f(xi) = ~vTi · ~̀, taking
O(n) multiplications and additions.

Now, let us see if we can equivalently do all the necessary steps when the pre-image is encrypted.
For that matter, we take an element-wise commitment to the ~vi from above to represent xi.
That is, the value xi now comes committed and encrypted as Ẽ(xi, κ) := (E(1, κ), E(gxi , κ),

E(gx
2
i , κ),. . . , E(gx

n−1
i , κ)) = (c1, . . . , cn), so that the matrix of exponents remains ~V = (vij)

n
i,j=1

with vij = xj−1i and as such invertible. Since the order of G is a prime, we can – in a setup
phase where the exponents are known – straightforwardly work out the values ~α and the lookup

table ~̀ = (`1, . . . , `n), which is supplied in plain (not encrypted) form to the instance that seeks
to evaluate f .

To evaluate f , let the encrypted input value xi be given as Ẽ(xi, κ). Then, we can compute
the lookup value E(f(xi), κ) as
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n∏
k=1

c`kk =

n∏
k=1

E(gx
k−1
i , κ)`k =

n∏
k=1

E(gvik , κ)α1uk1+α2uk2+...αnukn

=

n∏
k=1

E(gα1vikuk1+α2vikuk2+...+αnvikukn , κ) = E(gf(xi), κ).(1)

The last equality is instantly obtained by writing out the exponents for k = 1, 2, . . . , n and
rearranging terms properly when summing up.

A final remark is judicious here: the formula yields only a single value based on an input vector.
To properly implement the lookup to be repeatable, i.e., to model iterations like f(f(· · · f(x) · · · ))
or generally functions f : X → X, we need to look up all the elements of the output vector via
separate tables. So, the overall lookup table is no longer a n-dimensional vector, but an (n× n)-

matrix ~L = (~̀1, . . . , ~̀n). The j-th such lookup table ~̀j must then be designed to return yj−1,
whenever the input value x is represented by a sequence 1, x, x2, . . . , xn−1 in the exponents. That

is, the mapping f(x) = y, acting on x being represented by encrypted values 1, gx, gx
2

, . . . , gx
n−1

,

requires n lookups that successively yield 1, gy, gy
2

, . . . , gy
n−1

, each of which by (1) requires O(n)
exponentiations and multiplications. So, the total cost of an oblivious lookup comes to O(n2)
exponentiations (subsuming multiplications as the cheaper operation here).

Security of an OLT is defined in terms of the adversaries inability to infer anything about x or

f(x) from ~L and its encrypted input E(x, pk). This kind of security (against passive and active
attacks) follows immediately from our construction and the security of the encryption, since x
and f(x) remain encrypted at all times, and the lookup table – despite being available in plain
form – is independent of a particular input, thus cannot release any information about x or f(x).
Probabilistic encryptions like ElGamal can offer the additional appeal of enforced re-randomization
of the resulting ciphertexts. That is, if a distrusted third party does several lookups, it nevertheless
cannot recognize any results as being identical to previous ones.

This work closely relates to Private Function Evaluation (PFE), which provides a system where
the function-to-be-evaluated f and the inputs are private and the evaluator learns nothing about
either aside from the (encrypted) results of the evaluation of the function on the inputs. This can
be realized using Secure Function Evaluation (SFE) over a universal circuit ([4, 7]), to which f has
to be converted first. Another approach is to use a (non-universal) circuit representation of f and
employ a Fully Homomorphic Encryption (FHE) scheme [2, 6]. However, all mentioned approaches
carry complexities that are too high for practical applications. Conceptually closest to our ideas
seem to be [3] and [5], both based on singly homomorphic encryption. The former realises PFE in
a strict two-party setting with one party providing the function and the other providing the inputs.
Evaluation is done through a common virtual machine. The latter is based on a framework that
splits the task into Circuit Topology Hiding (CTH) and Private Gate Evaluation (PGE) which
together enable PFE with linear complexity in all standard settings. However, both PFE protocols
require an interactive setting while we are aiming for the non-interactive setting. The security
implications tied to our simple scheme when being lifted to two-operand functions (if that is
possible at all) are, however, far from clear and probably intricate (cf. [1]) and will be discussed
along the research sketched in this abstract.
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Acronyms

OLT: Oblivious Lookup Table
CTH: Circuit Topology Hiding
FHE: Fully Homomorphic Encryption
PFE: Private Function Evaluation
PGE: Private Gate Evaluation
SFE: Secure Function Evaluation

On constructing invertible circulant binary (n× n)-matrices with n2

2
ones

Tomáš Fabšič, Slovak University of Technology in Bratislava

Joint work with Otokar Grošek, Karol Nemoga and Pavol Zajac

Circulant binary matrices are frequently employed in modern cryptology and thus the need to
study circulant binary matrices with favourable additional properties arises.

An important subset of circulant binary matrices is the set of invertible circulant binary ma-
trices. Here, and in the rest of the paper, we always mean invertibility over GF (2). Invertible
circulant matrices over GF (q), where q is a power of a prime, were studied by e.g. Jungnickel
in [3]. Among other results, Jungnickel gives a formula for the number of invertible circulant
(n× n)-matrices over GF (q).

Another important property of circulant binary matrices is their density. The total number of
ones in a circulant binary (n×n)-matrix has to be a multiple of n. Since a circulant matrix is fully
determined by its first row, it is easy to see that the number of circulant binary (n× n)-matrices
with n × t ones is

(
n
t

)
, for 0 ≤ t ≤ n. However, it is not clear how many of these matrices are

invertible.
To our knowledge, the sets of invertible circulant binary (n × n)-matrices with fixed density

have not been studied in the literature yet. Let Cinv,t(n) be the set of invertible circulant binary
(n × n)-matrices with n × t ones. By an easy argument, presented in this paper, one can show
that a necessary condition for the set Cinv,t(n) to be nonempty is that t has to be odd:

Lemma 1. Let t = 0 (mod 2). Every circulant (n×n)-matrix over Z2 with n× t ones is singular.

In the present paper, we focus our attention on the set Cinv,n2 (n). The study of the sets
Cinv,t(n) for t 6= n

2 is a subject of our ongoing research.
The set Cinv,n2 (n) is ill-defined for odd n and, by Lemma 1, is empty for n = 0 (mod 4). Hence,

we can only hope to find invertible circulant binary (n × n)-matrices with n2

2 ones when n = 2
(mod 4). The main result of the present paper is a construction of a large set of matrices belonging
to Cinv,n2 (n), for n = 2 (mod 4). To this end, we use the following facts from [3]:

Fact 1 (Proposition 1.7.1 in [3]). Consider the mapping τ which sends the circulant binary (n×n)-
matrix with the first row (c0, c1, c2, . . . , cn−1) onto the coset of the polynomial c(x) = c0 + c1x +
c2x

2 + · · ·+cn−1xn−1. Then the mapping τ is an isomorphism between the ring of circulant binary
(n× n)-matrices and the ring Z2[x]/(xn + 1).
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Fact 2. A circulant (n× n)-matrix C over Z2 is invertible if and only if τ(C) is relatively prime
to xn + 1.

These facts tell us that in order to find an invertible circulant binary (n×n)-matrix with n2

2 ones,
it suffices to look for a polynomial of weight n

2 in Z2[x]/(xn+1) which is relatively prime to xn+1.
In the main theorem presented in our paper, we construct a large class of such polynomials for
every n = 2 (mod 4). The idea behind our construction is as follows:

(1) We observe that for n = 2 (mod 4) we have:

xn + 1 = (x+ 1)2 · q(x),

where q(x) = xn−2 + xn−4 + · · ·+ x2 + 1, and that q(x) has weight n
2 .

(2) We alter the polynomial q(x) to produce polynomials of weight n
2 , which are relatively

prime to xn + 1.

Thus, we arrive at:

Theorem 1. Let n = 2 (mod 4). Let q(x) = xn−2 + xn−4 + · · ·+ x2 + 1. Consider the set:

An = {c(x) ∈ Z2[x]/(xn + 1) : c(x) = xt · (q(x) + a2(x) + xk · a2(x)),

a(x) ∈ Z2[x]/(xn + 1),

gcd(a(x), q(x)) = 1,

t, k ∈ Zn, gcd(k, n) = 1 }.
Then:

(1) Every c(x) ∈ An has n
2 terms and is relatively prime to xn + 1 in Z2[x].

(2) Every c(x) ∈ An can be uniquely expressed in the form:

c(x) = q(x) + b2(x) + xsb2(x),

where:
• b(x) ∈ Z2[x]/(xn + 1), deg(b(x)) < n/2,
• gcd(b(x), q(x)) = 1,
• s ∈ Z∗n.

(3) |An| = 2× ψ(x
n
2 + 1)× φ(n).

The theorem gives a recipe to construct the set τ−1(An) =
{
τ−1(c(x)) : c(x) ∈ An

}
of invertible

circulant binary (n× n)-matrices containing n2

2 ones with cardinality:∣∣τ−1 (An)
∣∣ = 2× ψ(x

n
2 + 1)× φ(n).

Here φ(n) denotes the Euler function, and ψ(x
n
2 +1) denotes the number of polynomials of smaller

degree which are relatively prime to x
n
2 + 1 in Z2[x]. In [3], Jungnickel presents the following

formula for ψ(x
n
2 + 1), when n = 2 (mod 4):

ψ(x
n
2 + 1) = 2

n
2

∏
d|n2

(
1− 2−od(2)

)φ(d)/od(2)
.

In the formula, od(2) denotes the order of 2 in the group Z∗d.
In order to make the dependance of

∣∣τ−1 (An)
∣∣ on nmore explicit, we also present some estimates

of
∣∣τ−1 (An)

∣∣. Using the estimates from [2] (Thm. 2.1) and [1] (Thm. 8.8.7) for ψ and φ respectively,

we obtain a lower bound for
∣∣τ−1 (An)

∣∣:∣∣τ−1 (An)
∣∣ ≥ 2× 2n/2

eγ+1/2(1+log2(n/2)) (1 + log2 (n/2))
× n

eγ log log n+ 3
log logn

for n > 2.

where γ = 0.577216 . . . is the Euler constant. We also have a trivial upper bound for
∣∣τ−1 (An)

∣∣:∣∣τ−1 (An)
∣∣ ≤ 2× 2n/2 × (n− 1).
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Our experiments, however, suggest that the number of all invertible circulant binary (n × n)-

matrices with n2

2 ones is significantly larger than
∣∣τ−1 (An)

∣∣. Thus, it remains an open problem
to determine the cardinality of Cinv,n2 (n).

It is easy to observe that a circulant binary (n×n)-matrix with n2

2 ones contains n
2 ones in every

row and every column. In applications, one might need to construct invertible binary (n × n)-
matrices with row and column sums n

2 , not insisting on matrices being circulant. Matrices of the

form P × C × Q, where P and Q are (n × n) permutation matrices and C ∈ τ−1 (An), satisfy
these conditions. Thus the set τ−1 (An) can be used to construct a large set of invertible binary
(n× n)-matrices with row and column sums n

2 . Let us denote this set by Bn:

Bn = {B = P × C ×Q : C ∈ τ−1 (An) ,

P,Q ∈ (Z2)
n×n

are permutation matrices}.
We also consider the following subset Dn of the set Bn:

Dn = {D = P × C : C ∈ τ−1 (An) ,

P ∈ (Z2)
n×n

is a permutation matrix}.
We prove:

Lemma 2. |Dn| = (n− 1)!× |An|.
Thus, at least (n− 1)!× |An| invertible binary (n× n)-matrices with row and column sums n

2 can

be constructed from the matrices in τ−1 (An).
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Structure-Preserving Signatures on Equivalence Classes

Christian Hanser, Graz University of Technology

Joint work with Georg Fuchsbauer (IST Austria) and Daniel Slamanig (Graz University of
Technology)

Structure-preserving signature (SPS) schemes [1] are signature schemes whose message space are
(vectors of) elements of a bilinear group without requiring any prior encoding of messages to
group elements. In such schemes, one operates in a group setting equipped with a bilinear map
e : G1 × G2 → GT , and public keys, messages and signatures consist only of group elements
and the verification algorithm evaluates a signature by deciding group membership of signature
elements and by evaluating pairing-product equations (PPEs). SPS are particularily attractive
for numerous privacy-related applications such as (delegatable) anonymous credentials, group
signatures and blind signatures, as they are compatible with the Groth-Sahai (GS) proof framework
[11] (the latter yielding non-interactive zero-knowledge proofs that do not require random oracles).
Over the last years various lower bounds and impossibility results have been shown and different
(optimal) constructions with respect to number of group elements or number of pairing product
equations have been proposed [2, 3, 7, 4, 5].

SPS schemes on equivalence classes (SPS-EQ-R) are a specific variant of SPS and have been
proposed by Hanser and Slamanig [12]. The idea behind SPS-EQ-R is as follows. For a prime
p, Z`p is a vector space. Thus, if ` > 1 one can define a projective equivalence relation on it,

which propagates to G`i and partitions G`i into equivalence classes. Let ∼R be this relation, i.e.,
M ∼R N ⇔ ∃ s ∈ Z∗p : M = sN where M,N ∈ G`i . An SPS-EQ-R scheme signs an equivalence
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class [M ]R for M ∈ (G∗i )` by actually signing a representative M of [M ]R. It, then, allows to
switch to other representatives of [M ]R and to update the corresponding signature without having
access to the secret key. An important property of SPS-EQ-R is that two message-signature
pairs corresponding to the same class should be unlinkable. Although there are various types
of linearly homomorphic SPS schemes [13, 6], none of them provides this unlinkability property
(they are either trivially linkable or forgeable otherwise) and it turns out that this is not easy
to achieve. The first instantiation of SPS-EQ-R only provides security against random message
attacks (RMA) (cf. [8] and the updated version of [12]), but together with Fuchsbauer [9] they
subsequently presented the first scheme that provides security under adaptively chosen message
attacks (EUF-CMA), which is proven secure in the generic group model.

SPS-EQ-R turned out to be an interesting concept. Besides their applicability to efficient
attribute-based multi-show anonymous credential systems (cf. [12]), they can be used to efficiently
construct other well-known cryptographic primitives such as very efficient round-optimal blind
signatures (without GS proofs) and in the standard model [10] or standard model instantations of
verifiably encrypted signatures. Moreover, it can be shown that any SPS-EQ-R scheme that signs
equivalence classes of (G∗i )`+1 with ` > 1 can be turned into a corresponding SPS scheme signing
vectors of (G∗i )`.

In this talk we first introduce the concept of SPS-EQ-R, present existing instantiations and
present several recent results on their application as well as limitations.

References

[1] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo, Structure-

Preserving Signatures and Commitments to Group Elements, CRYPTO 2010, LNCS, vol. 6223, Springer,

2010, pp. 209–236.
[2] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo, Optimal Structure-Preserving Sig-

natures in Asymmetric Bilinear Groups, CRYPTO 2011, LNCS, vol. 6841, Springer, 2011, pp. 649–666.

[3] Masayuki Abe, Jens Groth, and Miyako Ohkubo, Separating Short Structure-Preserving Signatures from Non-
interactive Assumptions, ASIACRYPT 2011, LNCS, vol. 7073, Springer, 2011, pp. 628–646.

[4] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi, Structure-Preserving Signatures from Type

II Pairings, CRYPTO 2014, LNCS, vol. 8616, Springer, 2014, pp. 390–407.
[5] , Unified, Minimal and Selectively Randomizable Structure-Preserving Signatures, TCC 2014, LNCS,

vol. 8349, Springer, 2014, pp. 688–712.
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Side-information in Garbling

Noora Nieminen, University of Turku and Turku Centre for Computer Science (TUCS)

Joint work with Tommi Meskanen and Valtteri Niemi

1. Brief introduction to garbling schemes

Garbling techniques have been studied since Yao proposed his circuit-garbling technique in [11].
Since then, similar techniques have been used to develop further protocols for secure multiparty
computation. Recently, the various garbling techniques have been formalized by Bellare et al. to
garbling schemes [2]. According to [2], the syntactic framework of garbling scheme is independent
of the representation of the computation method which is garbled. Using other words, the same
framework would fit not only circuits but also Turing machines (TM), random-access machines
(RAM), deterministic finite automata (DFA) and beyond. Many different computational models
have been used in context of garbling – methods to garble Turing machines (garbled TM [4] and
RAM’s [6, 3]) among others have recently been developed.
The security of a garbling scheme is an important concept from practical and theoretical point
of view. Several security definitions for garbling schemes have been introduced in [2, 1, 7, 8, 9].
These definitions also include different levels of security thus providing flexibility to the use and
implementation of garbling schemes. A central concept in defining the security of garbling schemes
is the concept of side-information, modelling the information that is allowed to be leaked during
the garbled evaluation of the private functions. It is important to define the side-information
correctly, since it plays a central role in security. It is obvious that the model of side-information
is dependent on the computation model – circuits can leak different information than Turing
machines.
Side-information is used to parametrize the security of garbling schemes. Since there is a wide va-
riety of different side-information functions, the choice of an appropriate side-information function
is important from the practical point of view. The application in which garbling is used deter-
mines what kind of side-information functions can be chosen, because the information allowed to
be leaked varies in different applications. In some situations, nothing about the function should be
leaked, whereas in some situations it is acceptable that the function is totally leaked (in which case
the function would not be private anymore). As an example, Bellare et al. have implemented two
efficient garbling schemes Garble1 and Garble2. The former hides the function and the argument
but the topology of the circuit is allowed to be leaked.
Generalizing the side-information function has also further advantages. Recently, Ishai and Wee
have introduced the concept of partial garbling scheme [5]. A partial garbling scheme is designed
for a situation in which the argument x contains partly public and partly private information.
According to [5], the term public means information that is allowed to be leaked about x during
the garbled evaluation. It is hard to imagine that this feature would be reached using Bellare et
al.’s model of side-information function that is based on information deducible from f solely.
Moreover, Meskanen et al. have proposed a new way to perform the garbling. In reverse order
garbling, first the argument is garbled and only then the function is garbled [8]. In this model,
the side-information about the argument should be leaked when the argument is garbled. In the
case of circuits, this can be achieved by fixing the lengths of argument x, the final value y and
the length of function f beforehand as was done in [8]. In the case of Turing machines, it is not
reasonable to restrict the length of argument x in the computation. Hence, the length of x should
be leaked in another way. This is modelled by a side-information function which depends only
on x and usually reveals only the length of x (but may also reveal other information about the
argument, e.g. how many zeros and ones there are in the bit representation of x).
To summarize, there are several reasons to improve the concept of side-information function. The
current side-information depends only on f even though, according to the above reasoning, it
should depend on both the function f and argument x. In this paper we introduce a generalized
model in which the side-information may depend on argument x, in addition to dependence of
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f . Our side-information function can be used to define security of partial garbling schemes. In
addition, our new model supports better the other computation models in garbling.

2. Issues in current definitions of side-information

Since the side-information plays a central role in the security definitions of garbling schemes, the
side-information must be defined in an appropriate way. A garbling scheme is not tied to any
specific model of computation, hence the definition of side-information cannot rely on specific
features of a computation model. Unfortunately, the definition of side-information used in [2] is
not fully supporting other computation models than circuits.
One reason why the definition of side-information function does not fully support for example
Turing machines is the following. In the case of logical circuits, the argument x does not affect
how the function f is evaluated. For example, the running time of a circuit is constant and does
not depend on the chosen argument. Therefore, it is acceptable for circuits that the model of
side-information function in [2] depends only on the function f . However, Turing machines do not
have this same property.
Another reason is that, according to [2], the side-information always leaks at least the length of
the representations of f , x and y. Since the side-information function in the model of Bellare et
al. depends only on f , the lengths of x and y must be derivable from the function f alone. This
is another property that does not fit Turing machines.
Thirdly, the model as in [1] does not fully take into account all the security threats during the
garbled evaluation. Different types of attacks can reveal information about f , x and y. Following
only the execution of encryption algorithm and capturing X may reveal something about the
argument x. If the adversary can follow the execution of garbling algorithm and capture F then
the adversary finds something about function f only. Thirdly, if the adversary possesses F and X
and is able to follow the execution of decryption algorithm, then the adversary finds out something
about the evaluation ev(f, x). The different targets of attacks also suggest that there are different
components modelling the information available to the adversary: information about x solely,
information about f solely and information based on both f and x. Figure 2 illustrates the
possible attacks of an adversary during the garbled evaluation process.

3. Generalizing side-information and security definitions in garbling

In this paper, we show how the side-information function should be generalized so that the in-
dependence from the model of computation would be truly achieved. In the current model, the
side-information function depends only on f . In our new model the side-information function
depends also on the argument x. The rationale for defining the side-information as a function
of (f, x) is the following. An adversary attacking the security of a garbling scheme can get in-
formation from any of the algorithms Gb, En, De and Ev. The total side-information depending
on (f, x) represents the maximum information that is allowed to be leaked about the garbling
process. For technical reasons, the side-information Ψ(f, x) is divided into three components. The
first component consists of information related only to the argument x, the second component
leaks information about f only and the third component consists of information that depends on
both f and x. It might be that some of these components are missing.
Even though we have changed the model, this is not the case for the generalized model of side-
information and the security classes that are defined by the new side-information function. We
have proven that the old security classes are exactly the same classes as the new ones when the
side-information function Ψ is chosen in an appropriate manner and the model of computation for
f is restricted to circuits.
We also prove that the hierarchy for classes of garbling schemes remains the same even though
the model of side-information is changed. This applies to all garbling schemes in [7, 8, 9, 10].
To conclude, we have been able to create a generic model of side-information function that does not
restrict the model of computation used for representing f . Moreover, we have obtained simple and
practical security definitions for garbling schemes. In other words, we have now generic definitions
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Figure 2. Diagram illustrating the possible attacks for an adversary. The dotted
lines show possible targets for side-channel attacks. The dashed lines illustrate
the attacks to directly retrieve information.

that can be used to design secure garbled circuits, secure garbled Turing machines and secure
garbled versions of other computation models.
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Steganalysis of Stegostorage System1

Michala Gulášová, Slovak University of Technology

Joint work with Matúš Jókay

1. Introduction

The need for encrypted communication is still growing. With the raise in importance of cryptogra-
phy, “invisible” encrypted information becomes a more important issue, too. Only steganography
can provide this “masking”. It allows to hide any ongoing communication, whether encrypted or
not. The opposite pole of steganography is steganalysis. Its main objective is to detect such a
stealth communication. Therefore, we consider this other side of steganography as an interesting
object of study.
The main focus of this contribution is the detection of messages possibly present in JPEG images,
specifically the messages inserted through a system called StegoStorage. This system is able to
hide a single message into hundreds or thousands of images, making the detection more difficult. It
makes use of embedding into the least significant bit of DCT coefficients, which can be sequential,
pseudo-random but can also make use of Hamming codes [3]. Our aim is to achieve detectability
of sequential embedding with the full capacity of filling a carrier medium.
This contribution is divided into three sections. In the first section, we present our mathematical
model, which is necessary for expressing the dependency of pairs of values. In the second section,
we explain the importance of calibration method. In the last section, we take a look at the reached
results.

2. Mathematical Model

This section has been written in compliance with [1] and [2].
Let hkl(d) be the total number of AC DCT coefficients in the cover image corresponding to the
frequency (k, l), 1 ≤ k, l ≤ 8, whose value is equal to d ∈ {−2,−1, 2, 3}. The corresponding
histogram values for the stego image will be denoted using the capital letter Hkl. Let us assume
that the LSB embedding process changes n AC coefficients. The probability that a non-zero AC
coefficient will be modified is β = n/P , where P is the total number of non-zero AC coefficients.
Because the selection of the coefficients is pseudorandom in the StegoStorage system (due to the
utilization of pseudorandomly permuted coefficients in Hamming coding embedding scheme), the
expected values of the histograms Hkl of the stego image are

Hkl(d) = (1− β)hkl(d) + βhkl(d+ 1), for d = 2m (even number),

Hkl(d) = (1− β)hkl(d) + βhkl(d− 1), for d = 2m+ 1 (odd number).
(1)

This equation expresses the dependency of pairs of values, which originated from LSB embedding.

3. Calibration Process

The next assumption is that we have an estimate ĥkl(d) of the cover image histogram (acquired

from the process of calibration). Now, we can calculate Ĥkl using Eq. (1) and replace hkl(d) by

ĥkl(d). In our calculation, we only consider four values of d ∈ {−2,−1, 2, 3}, because these are
the most numerous. In [1], experiments have been carried out on how to get the value (denoted
β), which should give the best agreement with the cover image histogram. The best results of the
experiments were for the formula of β which minimizes the square error between the stego image
histogram Hkl and the expected value of Ĥkl:

βkl = arg min
β
{(Hkl(−2)− Ĥkl(−2))2 + (Hkl(−1)− Ĥkl(−1))2+

+ (Hkl(2)− Ĥkl(2))2 + (Hkl(3)− Ĥkl(3))2}.
(2)

1This work was supported by projects VEGA 1/0173/13 and VEGA 1/0529/13.
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The least square approximation in Eq. (2) (differentiation with respect to β and searching for
minimum) leads to the following formula for β:

βkl =
[ĥkl(−2)− ĥkl(−1)]2 − [ĥkl(−2)− ĥkl(−1)][Hkl(−2)−Hkl(−1)]

2(ĥkl(−2)− ĥkl(−1))2 + 2(ĥkl(3)− ĥkl(2))2
+

+
[ĥkl(3)− ĥkl(2)]2 − [ĥkl(3)− ĥkl(2)][Hkl(3)−Hkl(2)]

2(ĥkl(−2)− ĥkl(−1))2 + 2(ĥkl(3)− ĥkl(2))2

(3)

The final value of the parameter β is calculated as the average of selected low-frequency DCT
coefficients (k, l) ∈ {(1, 2), (2, 1), (2, 2)}.

4. Results

Analogously to the basic Chi-square attack, the results of this test indicate detectability through
the entire image database consisting of 1450 files. But in contrast to the Chi-square attack, the
situation when we embedded the information into the files and re-compressed them, was different.
The detectability of such steganographic files decreased only slightly. This fact means that this
steganalysis framework should be a more suitable approach to the detection of various types of
LSB embedding than the classical Chi-square approach.
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A New Encryption Standard of Ukraine:
The Block Cipher “Kalyna”

Roman Oliynykov, JSC Institute of Information Technologies (Ukraine)

Joint work with Ivan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev, Yurii Gorbenko,
Viktor Dolgov

1. Introducton

Since 1990 GOST 28147-89 [1] has been the official standard for block encryption in Ukraine.
Even now this cipher still provides an acceptable level of practical security. However, its software
implementation is significantly slower and less effective on modern platforms comparing to newer
solutions like AES [2]. In addititon, more effective theoretical attacks than brute force search were
discovered [3].
Based on the experience of international cryptographic competitions, like AES [4] or NESSIE [5],
the State Service of Special Communication and Information Protection of Ukraine organized
the National Public Cryptographic Competition [6] to select a block cipher that could become
a prototype of the new national standard. Main requirements to candidates were a high level
of cryptographic security, variable block size and key length (128, 256, 512), and an acceptable
performance of encryption in software implementation. There were no restrictions concerning
lightweight (hardware) implementations.
The block cipher Kalyna was selected among other candidates [7] and its slight modification (aimed
to performance improvement and more compact implementation) was approved as the national
standard DSTU 7624:2014 [8]. It describes both the block cipher and nine modes of operation.
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2. Cipher description

2.1. Encryption. The base encryption transformation of Kalyna cipher is defined as:

T
(K)
l,k = η

(Kt)
l ◦ ψl ◦ τl ◦ π′l ◦

t−1∏
ν=1

(
κ
(Kν)
l ◦ ψl ◦ τl ◦ π′l

)
◦ η(K0)

l ,

where:
l – the block size of Kalyna, l ∈ {128, 256, 512},
k – the key length of Kalyna, k ∈ {128, 256, 512} (k = l or k = 2 · l),
t – the number of rounds, t ∈ {10, 14, 18} depending on the key length,
K – the encryption key,

η
(Kν)
l – the function of addition of the internal state with the round key Kν modulo 264,
π′l – the layer of non-linear bijective mapping (S-box layer) that process byte (i.e., elements of
V8) vectors,
τl – permutation of elements gi,j ∈ GF (28) of the cipher internal state (right circular shift),
ψl – the linear transformation of the internal state elements over the finite field,

κ
(Kν)
l – the function of modulo 2 addition of the round key Kν and the state matrix.

2.2. Round keys generation. Round keys Ki with even indexes (i ∈ {0, 2, ..., t}) are obtained
with the Ξ(K,Kσ,i) transformation:

Ξ(K,Kσ,i) = η
(ϕ

(Kσ)
i )

l ◦ ψl ◦ τl ◦ π′l ◦ κ(ϕ
(Kσ)
i )

l ◦ ψl ◦ τl ◦ π′l ◦ η(ϕ
(Kσ)
i )

l ,

where η
(·)
l , π′l, τl, ψl, κ(·) are functions used in the encryption procedure; ϕ

(Kσ)
i returns Kσ added

modulo 264 with the constant shifted by the round key index. Input to the Ξ(K,Kσ,i) transformation
is the shifted value of the encryption key K.
The intermediate key Kσ used by Ξ(K,Kσ,i) is generated by the following transformation:

Θ(K) = ψl ◦ τl ◦ π′l ◦ η(Kα)l ◦ ψl ◦ τl ◦ π′l ◦ κ(Kω)l ◦ ψl ◦ τl ◦ π′l ◦ η(Kα)l ,

where Kα = Kω = K or Kα||Kω = K depending on block size and key length ratio. A constant
depending on the cipher parameters is taken as input for the Θ(K) transformation.
Rotated value of round key with even index forms the next round key having odd index.

3. Resistance against cryptanalytic attacks

The security level of the block cipher Kalyna was evaluated. It was shown that Kalyna is resistant
against known cryptanalytic attacks (differential, linear, integral, boomerang, truncated differen-
tials, algebraic, etc.). The minimum number of rounds when the cipher is resistant against all
considered attacks is:

• 128-bit block: 6 rounds (of 10 or 14, depending on the key length);
• 256-bit block: 7 rounds (of 14 or 18);
• 512-bit block: 9 rounds (of 18).

4. Performance comparison

Comparison of encryption performance in software implementation (without hardware accelera-
tion) of Kalyna with all combinations of block size and key length, AES and GOST 28147-89 is
given in Fig. 1. The results were obtained by running a program implemented in C (gcc v4.9.2 for
x86 64) on Intel Core i7-3770K@3.50GHz.
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Figure 1. The performance comparison of block ciphers.
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Breaking RC4 using Genetic Algorithm

Iwona Polak, University of Silesia

Joint work with Mariusz Boryczka

Cryptography is ubiquitous nowadays. It protects information of private people and big corpo-
rations, it has civil, political and martial applications. Everyone wants to have strong and safe
ciphers. The field of examining the strength of ciphers is cryptanalysis.

One of the branches of modern cryptography are stream ciphers, which belong to symmetric-key
cryptography [8]. Symmetric ciphers are used in data transmission in payment cards and other
types of smart cards, in voice transmission in mobile phones and also in other guided or wireless
types of data transmission.

In this work cryptanalysis of a stream cipher using genetic algorithm is shown. Attacking
bit streams with genetic algorithms was already tested in [2]. Authors look for the shortest
equivalent linear system which approximate given key stream with linear shift feedback register
(LFSR). Authors study registers of length 5 to 8. In our work also approximation using LFSR
is calculated, but for RC4. Previous research were conducted on LFSR itself [6] and A5/1 and
A5/2 [7].
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LFSR is a n-bits length register, which acts as follows:

• right-most bit is added to the generated stream,
• all other bits are shifted for one position to the right,
• left-most bit is calculated as XOR of chosen bits, called taps.

LFSRs are described by equations of the form xa + xb + ... + 1, where every power of x shows
places where taps occur. The highest power is the length of the LFSR. LFSRs appear in many
cryptographic constructions and pseudorandom number generators. LFSRs are common because
they are very easy for hardware implementation. Breaking component LFSR could be the first
step in breaking the whole stream cipher.

RC4 is a stream cipher [1] with variable key length implemented, among others, in SSL/TLS
(protecting Internet traffic) and WEP (securing wireless networks). It was designed by Ron
Rivest in RSA Security. The keystream is the same length as plaintext and it is independent of
the plaintext.

Genetic Algorithm (GA) is one of metaheuristic techniques [3, 5]. It was for the first time
introduced by John Holland in 1975 [4]. His work is based on the phenomenon of natural evolution.
There are basic evolutionary mechanisms implemented: crossover, mutation and selection. The
metaheuristic techniques (and thus also GA) are algorithms with randomized processes, so every
run can give different final results. For this research basic version of GA was used, which acts as
follows:

Algorithm: Genetic Algorithm

• randomly generate initial population
• evaluate the fitness function for every individual
• While termination condition has not been reached {

– apply for chosen individuals: {
∗ crossover
∗ mutation

}
– replace old population with new one using selection and reproduction
– evaluate the fitness function for every individual

}
• Return the best solution found

The tests are based on known plaintext attack. We have particular amount of keystream bits
and the aim of the research is to approximate the following bits with some LFSR. This work
focuses on possibility of RC4 cryptanalysis using Genetic Algorithm. But we assume that there is
no knowledge neither about the value of the key nor about cipher used, so we could generalise this
attack to other stream ciphers. The only thing given are the bits of keystream of limited length
(in this case 100 bits).

In this research to produce the attacked keystreams the following RC4 keys were used: “Key”,
“Secret”, 0x0102030405, 0x1910833222772a [9]. Every individual from GA is a single LFSR,
represented as binary string, where ones stand for taps. The length of individuals can be variable.

The fitness function was:

(1) ffit =
H(a[n+ 1..l], b[n+ 1..l])

l − n
where:
H(a, b) – Hamming distance between strings a and b,
a – output string of attacked system (here: RC4),
b – output string of an individual,
l – output length,
n – length of an individual.
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The fitness function was normalized to the interval [0, 1] so the results produced by different
length individuals could be compared. The higher value of the fitness function, the better is the
result achieved, e.g. ffit = 0.75 means that 75% of the output bits match the attacked stream.

There were two types of crossover considered. Both types of crossover are one-point crossover
– one was right-aligned, the second one was left-aligned. Individuals may vary in length so the
crossover had to be adapted to such situation as this is not a classical approach. Right-aligned
crossover guarantees to produce only correct individuals. With left-aligned crossover sometimes
the repair process needs to be activated, because some new individuals could be invalid LFSRs.

There were also two types of mutation considered. The first one was random swap – one tap
is chosen and moved to some other free place. The second one affected individual’s length – it
stretched the LFSR for one bit. Both mutation types were chosen among others during preliminary
studies.

The probability of crossover and mutation were respectively 0.5 and 0.05. Tests without any
mutation were also performed. There were 40 individuals for each generation and 100 generations
as termination condition was set. For every key and for every type of crossover and mutation
there were 30 runs of GA performed. Average and median values were calculated and together
with best and worst cases are shown in Table 1.

Table 1. Results for RC4 cryptanalysis

best worst worst avg median
k without with

mutation mutation

“Key” 0.750 0.628 0.644 0.679 0.679
“Secret” 0.766 0.614 0.639 0.676 0.674
0x0102030405 0.771 0.614 0.624 0.676 0.673
0x1910833222772a 0.754 0.600 0.621 0.672 0.671
altogether 0.771 0.600 0.621 0.676 0.675

Conclusions of the research are the following. Mutation improves the performance. The best
found individuals agree in 62-77% with attacked keystream, with average and median value at
67-68%. This means we can decrypt 67-68% of the message correctly, which can be enough
information to decrypt the whole message. This method is effective for not only A5/1 and A5/2,
but also for RC4. Further research will focus on generalising this method to other stream ciphers.
It is also planned to compare genetic algorithms with other metaheuristic technique, namely tabu
search.
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Ascon – A submission to CAESAR

Christoph Dobraunig, IAIK, Graz University of Technology

Joint work with Maria Eichlseder, Florian Mendel, Martin Schläffer

C I A — the three big letters in cryptography — stand for confidentiality, integrity and availability.
These are the three main attributes one wants to achieve by using symmetric cryptography. In
most use cases, it is desirable to achieve all three attributes together. For example, if a message is
exchanged between two parties, these parties might want no other third party to be able to read
the content. Neither do they want this message to be modified accidentally or intentionally, nor
do they want this to generate much computational overhead.

In the past, often two different schemes have been used to achieve confidentiality and in-
tegrity/authenticity. For instance, a block cipher like AES [10] in CBC mode is used to encrypt
a message, afterwards HMAC-SHA1 [11] is used to ensure authenticity. Although such composed
constructions might fulfill all needed security requirements, dedicated solutions have the potential
to achieve higher performance while also require less implementation overhead in terms of chip
area or code size. This talk deals with such a dedicated scheme, Ascon-128. Ascon-128 is the
primary candidate of a family of authenticated encryption schemes taking part in the ongoing
CAESAR competition [12]. The mission of CAESAR is to identify a portfolio of authenticated
encryption schemes out of more than 50 submissions, which is suitable for widespread adoption.

Since no strict design requirements have been stated in the CAESAR call, the candidates
differ significantly. For instance some candidates are optimized for high performance in a software
environment, while other designs target low area hardware implementations. The design of Ascon
is more balanced. This is also reflected by the design goals of Ascon, which are a very low footprint
in hardware and software, while still being fast, and providing a simple analysis and good bounds
for security [7].
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Figure 1. The encryption of Ascon-128 (taken from [7]).

Ascon-128 is sponge based [2, 3] and uses a MonkeyDuplex [6] like mode of operation. The
encryption is shown in Figure 1. In the case of Ascon-128, the key K, the nonce N and the
tag T have a size of 128-bit. The associated data A (not encrypted, just authenticated) and the
plaintext P (both encrypted and authenticated) are separately padded using a 10∗ padding until
they reach a multiple of the 64-bit blocksize. Then, they are split into 64-bit blocks which are
absorbed blockwise. Ascon uses two different permutations p12 and p6. Those two permutations
use the same round function and differ only in the number of rounds, which are 6 and 12.

The round transformation p consists of the following three steps:

• Addition of a round constant.
• Parallel application of 64 identical 5-bit S-boxes.
• Parallel application of 5 different 64-bit linear transformations.

The round constants differ for every round and are defined in the design document [7]. The linear
layer and the S-box are shown in Figure 2. The S-box is an affine transformation of the χ mapping
of Keccak [4]. The linear layer uses Σ of SHA-2 with 5 different sets of rotation values.
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x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)→ x0

x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)→ x1

x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)→ x2

x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)→ x3

x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)→ x4

Figure 2. Substitution layer with 5-bit S-box (left) and linear layer (right) (taken from [7]).

Several design features of Ascon help to allow fast and lightweight implementations in hardware
and fast implementations in software for different CPU architectures.

• The S-box is designed for fast bitsliced implementation, with relatively few, well pipelinable
instructions.

• Up to 5 instructions can be carried out in parallel in nearly every phase of the permutation.
• This parallelism can be achieved using only 2-operand instructions and 5 temporary reg-

isters.
• To scale for smaller implementations, the permutation can also be computed using only 2

temporary registers.
• Ascon is intuitively defined using only the common bitwise Boolean functions AND, OR,

XOR, NOT, and bitwise rotation.
• The performance of Ascon can benefit from platform-specific features and combined

instructions like ANDNOT.
• The design is optimized for hardware and modern CPUs using 64-bit instructions.

Besides performance and other implementation specific characteristics, the security of Ascon
is of capital importance. The security of the mode of operation has been analyzed by Jovanovic
et al. [9]. Furthermore, the resistance of Ascon against various state-of-the-art cryptanalysis
techniques has been evaluated [7, 8]. Besides the analytical aspect, Ascon has been designed
with side-channel attacks in mind. For instance the choice of the S-box facilitates similar threshold
implementations as already used for Keccak [5]. Moreover, implementations of Ascon do not need
look-up tables. This precludes cache-timing attacks like Bernstein’s attack on AES [1].

To sum up, this talk is about the CAESAR candidate Ascon. We present its design and
explain the main design goals. Furthermore, we will give an overview about the most recent
implementation and cryptanalysis results available at the time of the presentation.

Acknowledgments. The work has been supported in part by the Austrian Science Fund (project
P26494-N15) and by the Austrian Research Promotion Agency (FFG) and the Styrian Business
Promotion Agency (SFG) under grant number 836628 (SeCoS).
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Scalar multiplication on elliptic curves using the binary asymmetric
joint sparse form

Sara Kropf, Institut für Mathematik, Alpen-Adria-Universität Klagenfurt

Joint work with Clemens Heuberger

In public-key cryptography the computation of scalar multiples nP of an element P in some
Abelian group is a common example of a one-way-function. One possibility to compute nP
efficiently uses the binary digit expansion of n and computes nP by Horner’s scheme. This method
is called double-and-add method. For every nonzero digit in the digit expansion of n an addition
has to be processed. Since these are expensive, we want to minimize the number of nonzero digits.
Therefore we define the Hamming weight h(n) of a digit expansion of n as the number of nonzero
digits in this digit expansion. We are interested in digit expansions with a minimal Hamming
weight (with respect to a fixed digit set).

If the additive inverse of any element in the Abelian group can be computed essentially for free,
then one can also use negative digits in the digit expansion of n to decrease the Hamming weight.
An example for such a group is the additive group of points on an elliptic curve.

Example. An expansion of 27 with base 2 and digit set {−1, 0, 1} is (1001̄01̄) where 1̄ is −1. To
compute 27P for a point P on the elliptic curve, we write

27P = 2 (2 (2 (2 (2 (1 · P ) + 0 · P ) + 0 · P ) + 1̄ · P ) + 0 · P ) + 1̄ · P.
The Hamming weight of 27 = (1001̄01̄) is 3.

Joint representations of several integers can be used for computing a linear combination n1P1 +
· · ·+ ndPd of points Pi of an elliptic curve, or more generally an abelian group (cf. [10]).

Example. A digit expansion of (11, 4, 17)T with digit set {0, 1, 2} is1011
0020
2001

 .

It has Hamming weight 3. This expansion can be used to compute 11P1 + 4P2 + 17P3 by the
double-and-add method.

Digit expansions with a minimal Hamming weight among all digit expansions with the same
digit set and base are of special interest as the Hamming weight corresponds to the number of
elliptic curve additions. Examples for such optimal digit expansions in base 2 are
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Figure 1. Transducer for D−2,3 and d = 2.

(1) the nonadjacent form [8, 5]: It has digit set {−1, 0, 1} and the syntactical rule that at
least one of any two adjacent digits has to be zero.

(2) the width-w nonadjacent form [1, 6]: It has digit set {0,±1,±3, . . . ,±(2w−1− 1)} and the
syntactical rule that at least w − 1 of any w consecutive digits have to be zero.

(3) the simple joint sparse form [2]: It has digit set {−1, 0, 1} and is a 2-dimensional joint
digit expansion. The syntactical rules are given in [2]. A different optimal expansion with
the same digit set is given in [9].

(4) the asymmetric joint sparse form (AJSF) [4]: It has digit set D`,u = {a ∈ Z : ` ≤ a ≤ u}
with ` ≤ 0 and u ≥ 1 and is a d-dimensional joint digit expansion. The syntactical rules
are given in [4]. For extensions to bases other than 2, see [7].

These digit expansions exist and are unique for all integer vectors n. The AJSF is a generalization
of all other three optimal digit expansions.

The colexicographic order sorts digit expansions by lexicographically comparing the positions
of nonzero digits from right to left. For example for the integer 14, the digit expansion (1102) is
colexicographically less than the expansion (62): The positions of nonzero digits are 1101 and 11.
If these two strings are lexicographically compared from right to left, then the first one is less than
the second one.

Theorem (Heuberger–Muir [4]). The AJSF is colexicographically minimal and has minimal Ham-
ming weight among all digit expansions of an integer vector n with base 2 and digit set D`,u.

We consider the algorithm to compute the AJSF presented in [4]. By transforming this algo-
rithm into a transducer, we can asymptotically analyze the Hamming weight of the AJSF.

The transducer in Figure 1, computes the Hamming weight of the 2-dimensional AJSF with
digit set D−2,3. The input and output labels are omitted and transitions going back are gray. We
give a general construction of this transducer for arbitrary values of l, u and d.

Theorem (Heuberger–Kropf [3]). The Hamming weight h(n1, . . . , nd) of the AJSF of an integer
vector (n1, . . . , nd)

T over the digit set Dl,u in dimension d with equidistribution of all vectors
(n1, . . . , nd)

T with 0 ≤ ni < N for an integer N is asymptotically normally distributed. There
exist constants e`,u,d, v`,u,d ∈ R and δ > 0, depending on u, l and d, such that the expected value
is

e`,u,d log2N + Ψ1(log2N) +O(N−δ logN)
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l u d el,u,d vl,u,d Name
0 2 1 1/2 1/4 binary standard expansion
−1 1 1 1/3 2/27 non-adjacent form

−2w−1 + 1 2w−1 − 1 1 1/(w + 1) 2/(w + 1)3 width-w non-adjacent form
−1 1 2 1/2 1/16 simple joint sparse form
−3 11 1 1/5 2/125
−2 3 2 32/89 63200/2114907

Table 1. Special values of el,u,d and vl,u,d.

and the variance is

v`,u,d log2N −Ψ2
1(log2N) + Ψ2(log2N) +O(N−δ log2N),

where Ψ1 and Ψ2 are continuous, 1-periodic functions on R.
The constants el,u,d and vl,u,d can be computed for any fixed digit set.

Because of the central limit theorem, we obtain that a Hamming weight of the AJSF is concen-
trated around its mean. This mean is the constant el,u,d times the length of the digit expansion
log2N . This implies that scalar multiplication on elliptic curves using the AJSF is efficient for
many integer vectors n. Special values of the constants el,u,d and vl,u,d are given in Table 1.
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Properties of τ-adic Digit Expansions for Fast Scalar Multiplication

Daniel Krenn, TU Graz, Austria

Joint work with Clemens Heuberger

One main operation in (hyper-)elliptic curve cryptography is building multiples of a point on a
(hyper-)elliptic curve over a finite field. Clearly, we want to perform this scalar multiplication
as efficiently as possible. A standard method are double-and-add algorithms. But if the (hyper-
)elliptic curve is defined over a field with q elements and we are working in the point group in
an extension (i.e., working over a field with qm elements), then one can use a Frobenius-and-
add method instead, for example, see [11], [12] for Koblitz curves or [10], [15], [16]. There the
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(expensive) doublings are replaced by the (cheap) evaluation of the Frobenius endomorphism in
the point group. To use this method we need to understand digit expansions with base τ , where
τ is an algebraic integer whose conjugates all have the same absolute value. In the case of elliptic
curves, this is an imaginary-quadratic integer.

So let’s consider digit expansions with a base as above, i.e., we write a number z ∈ Z[τ ] as a
finite sum

z =

L−1∑
`=0

d`τ
`,

where the d` are out of a finite digit set D. Let w be a positive integer. Our digit set D should
consist of 0 and one representative of every residue class modulo τw which is not divisible by τ .
That choice of the digit set yields redundancy, i.e., each element z of Z[τ ] has more than one
representation. Thus we can choose a “good” representation, which leads to a fast evaluation
scheme.

The width-w non-adjacent form [14], w-NAF for short, is a special representation: Every block
of w consecutive digits contains at most one non-zero digit. The choice of the digit set guarantees
that the w-NAF-expansion of any number z is unique. The low weight (number of non-zero digits)
of this expansion makes the arithmetic on the (hyper-)elliptic curves efficient.

In this talk the following properties of these digit expansions are discussed.

Existence

A quite natural first question is, whether each possible multiple of a curve point in the scalar
multiplication algorithm can be calculated, or, translated into the language of digit expansions,
whether each element of Z[τ ] admits a unique w-NAF (for all w). Of course, this depends on the
choice of the digit set.

Various results exists, cf. [12], [15], [16], [1], [3] and [2]. Here, results for imaginary-quadratic
bases with an minimal norm digit set, cf. [6] are presented. The higher-dimensional case and other
digit sets are also discussed, see [7].

Occurrences of Digits

The next part deals with analyzing the number of occurrences of a fixed non-zero digit. This
property corresponds to the average running time of the scalar multiplication algorithm.

Again we take a minimal norm digit set. We give an explicit expression for the expectation and
the variance of the occurrence of such a digit in all expansions of a fixed length, cf. [6]. Further
a central limit theorem is proved in this setting. Moreover, we found an asymptotic formula for
the number of occurrence of a digit in the w-NAFs of all elements of Z[τ ] in some region (e.g.
a disc). The main term coincides with the full block length analysis mentioned above, but a
periodic fluctuation in the second order term is also exhibited. This is a frequent behaviour of
digit expansions, see, for example, [9] or [5]. The proof of the presented result follows Delange’s
method [4], but several technical problems have to be taken into account. Generalizations to
higher dimensions (coming from hyperelliptic curves) are also mentioned, cf. [13]

Minimality of Digit Expansions

Another interesting question is the following: Is the w-NAF-expansion optimal, where optimal
means minimizing Hamming-weight, i.e., the number of non-zero digits? These minimal expansions
correspond to the fastest evaluation schemes for the scalar multiplication.

The answer to the posed question is affirmative for most of the cases coming from elliptic curves.
More precisely, suppose τ is a solution of τ2 − pτ + q = 0, where p and q are integers, then we
could show optimality if |p| ≥ 3 and w ≥ 4 or if |p| ≥ 5 and w = 3. Moreover, optimality and
non-optimality results were shown for some special configurations, see [8]. Again, generalizations
are discussed, cf. [7]
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Non-commutative Digit Expansions for Arithmetic on Supersingular
Elliptic Curves

Michela Mazzoli, Alpen-Adria-Universität Klagenfurt, Austria

In this talk we shall consider non-commutative digit expansions in a subring of a quaternion al-
gebra to the basis of a quadratic algebraic integer τ . These digit expansions can be used in a
τ -and-add method to speed up arithmetic (scalar multiplication and pairing) on certain families
of supersingular elliptic curves in characteristic p ≥ 5. The basis τ represents the Frobenius en-
domorphism of the curve, that is τ(x, y) = (xp, yp).

Arithmetic of elliptic curves is in general rather time-consuming. The scalar multiplication, i.e.
nP = P + · · · + P with P point on the curve and n ∈ Z, is especially important as it occurs in
elliptic curve cryptosystems. One of the possible speed-up methods to calculate nP is to expand

the integer n to the basis τ , i.e. n =
∑l−1
j=0 djτ

j , with dj belonging to some suitable digit set. Then
one can compute nP with a τ -and-add method:

nP =

l−1∑
j=0

djτ
j(P ) = d0P + τ(d1P + τ(d2P + τ(· · ·+ τ(dl−1P ) · · · ))) ,

possibly precomputing and storing the values dP for all non-zero digits. This τ -and-add scheme
requires wtτ (n)− 1 point additions (where wtτ (n) is the number of non-zero digits in the τ -adic
expansion of n) and lenτ (n) − 1 = l − 1 evaluations of τ , which is very efficient, as it requires
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only two p-powers in Fpm , i.e. two cyclic shifts if the field Fpm is represented in normal base.
Further syntactical constraints, such as the NAF property (see below), can be imposed on the
digit expansion in order to reduce the number of additions and/or the precomputation effort.

Moreover, in the pairing-based setting, computation of Weil and Tate-Lichtenbaum pairings is
achieved with a double-and-add scheme, i.e. by means of the binary expansion of integers. Also
in this case extra operations have to be performed when a non-zero digit occurs (see [1, Alg. 16.8]
for the detailed algorithm). Substitution of the binary expansion with a τ -adic expansion is not
only possible but also desirable in the pairing computation as well.

Let E/Fp be an elliptic curve over the finite field Fp with p ≥ 5 prime. It is well-known ([3,
Ch. 13, § 7]) that E is supersingular if and only if its endomorphism ring End(E) is an order in
a quaternion algebra; in particular, End(E) is not commutative. In this case the characteristic
polynomial of the Frobenius endomorphism τ of E is x2 + p, and thus τ2 = −p.

Furthermore, the elliptic curves Ea : y2 = x3 + ax and Eb : y2 = x3 + b have automorphism
groups Aut(Ea) ∼= U4 and Aut(Eb) ∼= U6 respectively, where Um is the cyclic group of the m-th
roots of unity ([5, III § 10]). From the computational perspective, this fact is important because
automorphisms turn out to be very cheap to evaluate. More precisely, if ζ is an automorphism of
order m, then the action of ζ on the points of the curve is ζ(x, y) = (u2x, u3y), where u ∈ Fp is

an element of order m and Fp is the algebraic closure of Fp.
In addition, Ea is supersingular if and only if p ≡ 3 mod 4, while Eb is supersingular if and

only if p ≡ 2 mod 3. These two families of curves have been already studied for fast scalar
multiplication methods, for instance in [2], but only in the ordinary case.

When Ea and Eb are supersingular, their automorphisms are defined in Fp2 , but not in Fp. For
instance, consider the curve of type Ea in characteristic p ≡ 3 mod 4. Then i(x, y) = (−x,−uy) ∈
Aut(Ea) and u ∈ Fp has order 4. Since 46 | p− 1 but 4 | p2 − 1, we have u ∈ Fp2 \ Fp.

The endomorphisms that commute with τ are precisely those defined in the base field Fp (cf. [4]).
Therefore, when we compute the τ -adic digit expansions by including the automorphisms in the
digit set, as well as in the τ -and-add algorithm, we must pay attention to the order of operations
and keep track of any non-commutative switch.

In this work we shall focus on curves of equation Ea : y2 = x3 + ax in characteristic p ≡ 3
mod 4 (the case of Eb is analogous). If i(x, y) = (−x,−uy) is an automorphism of Ea of order 4,
then

τ ◦ i (x, y) = (−xp,−upyp) ,
i ◦ τ (x, y) = (−xp,−uyp) .

As said before, τ ◦ i 6= i ◦ τ because u 6∈ Fp. However, up is the other element of order 4 in Fp2 ,
which means that −i(x, y) = (−x,−upy) is the other automorphism of Ea of order 4. Hence

(1) i ◦ τ = −τ ◦ i .

Consider the free Z-module Z[i, τ ] = {a + bi + cτ + d(iτ) | a, b, c, d ∈ Z} equipped with the
following multiplication rules:

τi = −iτ, i2 = −1, τ2 = −p .

The first rule is justified by (1). In particular, we have (iτ)
2

= −p. Since i and τ are Z-linearly
independent, Z[i, τ ] has rank 4. It is clear that Z[i, τ ] is a subring of the algebra of Hamilton
quaternions.

We want to find digit expansions to the basis τ of elements of Z[i, τ ]. In order to construct a
digit set in Z[i, τ ], we have to choose a representative of each residue class modulo τ . We show
that

Z[i, τ ]/〈τ〉 ∼= GF
(
p2
)
.
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Given η ∈ Z[i, τ ], we consider the existence of a right τ -adic expansion η =
∑l−1
j=0(aj , bj)τ

j ,

with (aj , bj) belonging to the digit set

∆ =

{
(n,m) ∈ Z× Z | −p− 1

2
≤ n,m ≤ p− 1

2

}
.

We prove the following:

• Every element of Z[i, τ ] admits a finite right ∆-τ -adic expansion.
• The digit set ∆ provides a NAF (Non-Adjacent Form) expansion of integers, i.e. if n =∑l−1

j=0 δjτ
j is a τ -adic expansion of n ∈ Z with digits δj ∈ ∆, then δjδj+1 = 0 for all

j = 0 . . . l − 2, or equivalently there is at least one 0 every two digits.

The NAF property allows us to reduce the weight of the expansion and consequently the com-
putational cost of arithmetic on the elliptic curve.

Finally, we show that any right ∆-τ -adic expansion can be easily derived from a left ∆-τ -adic
expansion (i.e. the basis τ is placed right, resp. left, to the digit) and viceversa, with the obvious
consequence that the statements above hold for left expansions as well.
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Quality Limitations on the Extraction of a PUF-based
Cryptographic Key

Sandra L. Lattacher, TECHNIKON Forschungs- und Planungsgesellschaft mbH

Joint work with Martin Deutschmann, Michael Höberl, Christina Petschnigg and Naeim Safari

1. Introduction

An indispensable demand for the majority of cryptographic implementations is the ability to se-
curely generate and store cryptographic keys. Physically Unclonable Functions (PUFs) prove to
be a suitable primitive to comply these requirements. PUFs can be understood as physical systems
which, when measured, provide unique and unpredictable responses. The responses are depending
on the physical structure of the device and are out of the control of the manufacturer. As PUFs
are physical objects they are prone to errors, i.e. the responses will always include some degree
of noise. Further the distribution of the responses does not necessarily have to be uniform. In
other words, when designing key generation or protection schemes based on PUF measurements,
one has to make sure that suitable error correcting mechanisms are put in place. Further entropy
extraction is crucial, to ensure the generation of keys with high entropy.

In this work we are exposing the limits in the design of a key generation framework by taking
into account relevant properties of PUF instantiations, such as entropy or the mutual information.
Our attempt is to present a tool to evaluate if and how a cryptographic key of a certain length
can be extracted with the demanded reliability for a given PUF source. The solutions presented
are evaluated against concrete PUF parameters. The PUF source are 65nm TSMC ASICs, which
were developed in the course of the FP7 research project UNIQUE 2.

2 www.unique-project.eu
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2. The PUF Framework

By challenging the PUF twice consecutively with identical conditions, we expect an unreliability
of the two responses R and R′ reflected by the so-called intra distance. Moreover, when comparing
two different instances of a PUF type, an inter distance of about 50% is desired.

To reliably generate cryptographic keys, the PUF response has to be processed within a specific
framework that can cope with the noise cancellation and the entropy extraction. This is where so
called Helper Data Algorithms (HDAs) come into play. Most HDAs follow a two-step approach:
the key is derived by querying the PUF in a secure environment during an enrollment phase.
During the so called reconstruction phase the key is recovered in the field. A HDA can additionally
be divided into three sub-components. The first is bit selection, aiming at discarding the least
reliable bits within a PUF response. This step can significantly lower the number of expected errors
within the response and thus allowing the application of shorter and simpler error correcting codes.
Applying bit selection as well as error correction measures allow the assumption of a negligible low
failure rate during reconstruction. However, the remaining bits have non-maximum entropy due to
leakage during the former two steps. Therefore, the third step comprises entropy compression. [5]

3. Quality Aspects of a Key

Generally speaking there are two main areas that might affect the quality level of a key: the
property of the raw data, and the helper data leakage, including the choice of the error correction
and the randomness extraction. A rough assessment on the quality of the data is the Hamming
weight of the response which gives a first indication of the randomness, since it is a measure of
the distribution of ones and zeros within a binary bit string:

(1) W (x) =

n∑
i=1

xi.

When designing key generation frameworks, a high level of unpredictability and robustness is
claimed. Entropy estimation, which is the measure of uncertainty of a random variable, comprises
in fact all relevant parameters.

The Shannon entropy which is commonly used in information theory is defined as

(2) H1(x) = −
n∑
i=1

pi log2 pi,

where x defines the binary random variable and pi the probability that x takes on zero or one.
The limit of H1 converges to the min-entropy:

(3) H∞(x) = − log max
i
pi.

When transmitting information, it is assumed to be correct on the receiver side, but in fact, the
signal will be superimposed by noise with a specific bit error probability pb. Assuming a given bit
error probability we claim a failure rate of Pfail ≤ 10−6. For simple codes, an estimation of the
probability that a string of n bits has more than t errors is given by:

(4) Pfail =

n∑
i=t+1

(
n

i

)
pib(1− pb)n−i

With the use of a HDA, a key is derived from the raw PUF source bits by compressing the bits
with a hash function. The amount of source bits that are needed to achieve a secret of a specific
size is expressed in the so-called secrecy rate. The maximum achievable secrecy rate depends on
the mutual information
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(5) I(x, y) = H(x)−H(x|y)

between the measurement done at enrolment x and reconstruction y, where H(x|y) describes the
remaining entropy of x when y is known. In more detail, dK/I(x, y)e gives the number of required
source bits to derive a secret of size K. [8] [18]

Given any C[n, k, d] code the entropy loss within a practical realization of a HDA can be stated
as n − k. It follows that the leftover entropy ` in the PUF response is given by ` = m + k − n,
relying on the commonly used Random Oracle model [2] [12], where the loss during the entropy
extraction is assumed as 0.

4. Evaluation and Limitations

In the following, our aim is to show the limitations and boundary conditions when generating
a 128-bit binary key based on different PUF instantiations, when having the quality aspects of
Section 3 in mind. The used ASICs containing different PUF types are mounted on a customized
evaluation board, that is connected via a ribbon cable to a Xilinx KC705 FPGA evaluation board.
The ASICs are controlled via a dedicated IP block on the FPGA and the measurements are
forwarded via a serial interface to a PC. We focused during the evaluation of raw PUF data on
memory based PUFs, namely SRAM, Latch and DFF PUFs.

Type pb N H1(x) H∞ I(x, y) W (x)

SRAM 5.2% 65536 1.00 0.99 0.70 0.49

DFF 3.1% 8192 0.84 0.45 0.64 0.73

Latch 2.5% 8192 0.79 0.39 0.63 0.76

Table 1. Quality measures of memory-based PUFs at room temperature.

Table 1 lists in addition to the bit error rate, also the maximum number of source bits N as well
as the entropy H1(x), the min-entropy H∞(x), the mutual information I(x, y) and the Hamming
weight W (x) for SRAM, DFF and Latch PUFs. The SRAM PUF behaves worst regarding the bit
error rate with a value of 5.2%. In contrast, the other parameters such as the entropy values or the
Hamming weight come close to an optimum. The biased output of DFF and the Latch PUF ex-
pressed by the Hamming weight influences the entropy and the min-entropy, which is significantly
lower for these two PUF types. Figure 1 depicts the dependency between the code parameters n
and d with respect to a failure rate Pfail ≤ 10−6 for the evaluated PUF types.
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Figure 1. Dependency of the code parameters n and d regarding the failure rate
Pfail for SRAM, DFF and Latch PUFs.
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Targeting secure key generation, the leftover entropy is the second point that has to be considered.
It is common practice to process the PUF response in blocks of equal length n. With a given
entropy, the mutual information and a desired key length of 128 bit, a lower bound of the block
numbers lmin is derived. Depending on the number of available source bits N , an upper bound
lmax can be determined. As long as lmax > lmin, the key generation will be successful with
maximum achievable entropy. Based on these assumptions, all free parameters can be combined
to a threshold function

(6) fT (k, n) = k − sn− o,

where s is the slope, o the offset of the function and k, n are the variable code parameters. In
Table 2 the fixed parameters of fT are shown for a changing number of source bits and for the
different PUF types. Generally, the slope of the threshold function tends to increase, when the
entropy decreases at the same time. The key can be derived with maximum achievable entropy
with a specific code when f(k, n) ≥ 0.

1024 2048 4096 8192

Type s o s o s o s o

SRAM 0.19 0.32 0.09 0.46 0.04 0.55 0.02 0.59

DFF 0.68 0.39 0.61 0.50 0.58 0.47 0.57 0.50

Latch 0.74 0.43 0.67 0.53 0.64 0.48 0.63 0.56

Table 2. Parameters of the threshold function for the feasibility of key generation
given the slope s and the offset o.

5. Conclusion

The aim of this paper was to present a hands-on guide on how to design tailored PUF-based key
generation frameworks, taking into account the limitations given by the PUF source and the HDA.
With the implementation of a threshold function, we are able to expose the limits of reliable key
generation while considering the relevant quality aspects at the same time. There are a couple of
published papers that describe the design of HDAs, the choice of the error correcting code, the
consideration of entropy loss or statistical analysis of different PUF sources. To our best knowl-
edge, however, there is no paper that tries to draw a complete picture, reaching from statistical
investigation on the PUF source to the actual HDA design.
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On the linear complexity profile of certain sequences derived from
elliptic curves

László Mérai, Johann Radon Institute for Computational and Applied Mathematics, Linz,
Austria

Joint work with Arne Winterhof

Let Fq be the finite field of q elements with a prime power q satisfying gcd(q, 6) = 1 and let E be
an elliptic curve defined by the short Weierstrass equation

y2 = x3 +Ax+B, A,B ∈ Fq
over Fq with non-zero discriminant.

The Fq-rational points E(Fq) of E form an Abelian group (with respect to the usual addition
which we denote by ⊕) with the point at infinity O as the neutral element.
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Let Fq(E) be the function field of E over Fq. For an f ∈ Fq(E) we define the elliptic curve
generator for pseudorandom numbers (rn) with respect to f as the sequence

rn = f(Wn) = f(G⊕Wn−1) = f(nG⊕W0), n = 1, 2, . . . ,

with G,W0 ∈ E(Fq).
The elliptic curve power generator (sn) with respect to f is defined as

sn = f(enG), n = 1, 2, . . .

where the integer e ≥ 2 is co-prime to the order |G| of the point G.
In this talk we present several results concerning the linear complexity of the sequences (rn)

and (sn).
The linear complexity profile L(sn, N), N = 1, 2, . . . , of a sequence (sn) over Fq is a non-

decreasing sequence where the N -th term is defined as the length L of a shortest linear recurrence
relation

sn+L = cL−1sn+L−1 + · · ·+ c1sn+1 + c0sn, 1 ≤ n ≤ N − L
where c0, . . . , cL−1 ∈ Fq, that sn satisfies. The value

L(sn) = sup
N≥1

L(sn, N)

is called the linear complexity of the sequence (sn);

L(sn) = L(sn, 2t) ≤ t.
Elliptic curve generator. The linear complexity profile L(rn, N) of the sequence (rn) was already
studied earlier for some special function f . For example, Hess and Shparlinski [1] obtained non-
trivial bounds for a large family of functions, namely if the pole divisor of f is a multiple of a
single place. We extend this family using Edwards coordinates.

An Edwards curve C over Fq is defined by

u2 + v2 = c(1 + du2v2),

where c, d ∈ Fq, d 6= 0, 1, c 6= 0. For a non-square d over Fq the addition is defined by

(u1, v1)⊕ (u2, v2) =

(
u1v2 + u2v1

c(1 + du1u2v1v2)
,

v1v2 − u1u2
c(1− du1u2v1v2)

)
.

The points of the curve form a group with respect to this addition, with (0, c) as the neutral
element. We remark that every Edwards curve is birationally equivalent to an elliptic curve. On
the other hand, if E(Fq) has a unique point of order two, then E is birationally equivalent to an
Edwards curve.

Theorem. Let C be an Edwards curve and f ∈ Fq(C) such that the ideal points are poles. If
G ∈ C of order t and wn = f(nG), then we have

L(wn, N) ≥ min

{
t− deg f

4 deg f
,
N − deg f

4 deg f + 1

}
, N ≥ deg f.

For example, if f ∈ Fq(C) is the sum of the coordinate functions: f(u, v) = u + v, then the
theorem says, that the linear complexity profile of the corresponding sequence is large. However,
if we use the birationally correspondence, we get a function which does not fulfill the requirement
of the Hess-Shparlinski theorem.

Elliptic curve power generator. The computation of an element of the elliptic curve power gen-
erator from the previous ones is highly related to the generalized Diffie-Hellman problem thus it
is thought to be ‘secure’. In the next theorem we give an unconditionally result on the linear
complexity of the sequences.

Theorem. Let f ∈ Fq(E) be a non-constant function. If the order |G| of G is a prime number
and the multiplicative order of e mod |G| is t, then

L(rn)� t

|G|2/3(deg f)1/3
.
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WELLDOC property in bi-ideals

Raivis Bēts3, University of Latvia, Institute of Mathematics and Computer Science

Joint work with Jānis Buls

A combinatorial condition called well distributed occurrences, or WELLDOC for short, has been
introduced in [1] and [2]. The WELLDOC property for an infinite word u over an alphabet A
means that for any integer m and any factor w of u, the set of Parikh vectors reduced by modulo

m of prefixes of u preceding the occurrences of w equals Z|A|m . The main aim of our work is the
investigation of possible application of aperiodic infinite words in development and production
aperiodic pseudorandom number generators (PRNGs) with good statistical behavior [3].

The proofs that WELLDOC property holds for the family of Sturmian words, and more gen-
erally, for Arnoux-Rauzy words are given in [1] and [2]. In our paper we analyse the WELLDOC
property for bounded bi-ideals, a subclass of recurrent words, and prove the existence of a 2-
bounded bi-ideal over the alphabet A = {0, 1} that satisfies the WELLDOC property.

Let A = {a0, . . . , ak} be a finite, non-empty set of elements (letters), called an alphabet. An
n-tuple (u0, . . . , un) of a set A is called a finite word and is denoted u = u0u1 . . . un. The set of
all non-empty words of A is denoted A+. An empty word of A is denoted by λ and we define
A∗ = A+ ∪ {λ}. Number n+ 1 is called the length of a finite word u = u0u1 . . . un and is denoted
|u| = n + 1. A total map x : N → A is called an infinite word, and the set of all infinite words is
denoted by Aω. Let a#b, or simply ab, denote the word concatenation.

A word w is called a factor of a word u if there exist words x, y such that u = xwy. If x = λ,
then w is said to be a prefix of u, but if y = λ, then w is a suffix of u. By u[p, l] we denote the factor
of the word u that starts in the position p and ends in the position l, i.e., u[p, l] = upup+1 . . . ul. If
the factor is a single letter, it is denoted u[l] instead of u[l, l]. For any factor w of the infinite word
u, every index i such that w is a prefix of the infinite word uiui+1ui+2 . . . is called an occurrence
of w in u.

An infinite word x ∈ Aω is called periodic if it is of the form x = uω, where u ∈ A+ and ω
denotes an infinite repetition. An infinite word x is called eventually periodic if it is of the form
x = vuω, where u, v ∈ A+. An infinite word is called aperiodic if it is not eventually periodic. A
sequence of finite words

(1) v0, v1, . . . , vn, . . .

is called a bi-ideal sequence if v0 ∈ A+, and

(2) ∀i ≥ 0 : vi+1 ∈ viA∗vi
Let {ui}i∈N be an infinite sequence of finite words with u0 6= λ. Let us define a sequence of words
{vi}i∈N by induction, so that:

(3)
v0 = u0,

vi+1 = viui+1vi

The limit of this sequence x = limi→∞ vi is called a bi-ideal.
A bi-ideal x is called a finitely generated bi-ideal if the sequence {ui}i∈N is periodic. A bi-ideal

x is called a µ-bounded bi-ideal, if there ∃µ such that

(4) ∀i ∈ N : |ui| ≤ µ.

3Funded by ESF project 2013/0024/1DP/1.1.1.2.0/13/APIA/VIAA/045
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The Parikh vector of a finite word over an alphabet {0, 1, . . . , d− 1} is defined as

(|w|0, |w|1, . . . , |w|d−1).

For a finite or infinite word u = u0u1u2 . . . , Prefnu will denote the prefix of length n of u, i.e.,
Prefnu = u0u1 . . . un−1.

Let i0, i1, . . . denote the occurrences of w in an aperiodic infinite word u over the alphabet
{0, 1, . . . , d− 1}. According to the definition, if for any m ∈ N and any factor w of u,

{(|Prefiju|0, . . . , |Prefiju|d−1) mod m|j ∈ N} = Zdm;

that is, the Parikh vectors of Prefiju for j ∈ N, when reduced by modulo m, give the complete

set Zdm, then u has well distributed occurrences (that is, has the WELLDOC property).
As infinite words, which contain all finite words over an alphabet A as its factors, satisfy the

WELLDOC property, it follows that there exists a bi-ideal with WELLDOC property. The main
result of this paper is proof that there exists a 2-bounded bi-ideal in alphabet {0, 1}.

The next goal is to find a good algorithm that generates a basis sequence {ui}i∈N of a 2-bounded
bi-ideal such that the bounded bi-ideal, generated by this basis sequence, satisfies the WELLDOC
property. Having such algorithm would help us to produce aperiodic PRNGs with good statistical
behavior.
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Statistical Analysis of a Novel Cryptosystem Based on Automata
Compositions

Géza Horváth, University of Debrecen

Joint work with Pál Dömösi and József Gáll

Modern block cyphers are symmetric cryptosystems operating on fixed-length groups of bits, called
blocks. These blocks contains at least 128 bits. The cryptosystem transforms the plaintext blocks
into cyphertext blocks one by one. In [1] the authors introduced a novel block cypher based
on abstract automata and Latin cubes. The basic idea of this novel cryptosystem is to use a
giant size finite automaton and a pseudorandom generator. The set of states of the automaton
consists of all possible plaintext/cyphertext blocks, and the input set of the automaton contains
all possible pseudorandom blocks. The size of the pseudorandom blocks are the same as the size of
the plaintext/cyphertext blocks: 128 bits. For each plaintext block the pseudorandom generator
generates the next pseudorandom block, and the automaton transforms the plaintext block into a
cyphertext block by the effect of the pseudorandom block. The key is the transformation matrix
of the automaton. The problem with this idea is the following. The size of the transition matrix of
the automaton is huge, namely 2128× 2128× 16 bytes, which is impossible to store in the memory
or on a hard disk. The solution is to use an automata network. Automata network consists of
smaller automata, and it is able to simulate the work of a huge automaton [2].

A block cypher should have an appropriate avalanche effect, and a protection against differential
cryptanalysis. This means, one bit change in the plaintext block should effect significant change in
the cyphertext block, and one bit change in the cyphertext block should effect significant change
in the corresponding plaintext block. To test our system, we calculated the number of the identical
bytes in two 16 bytes long independent random strings. We have tested 1.000.000 pairs, and saved
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the result. We also compared 1.000.000 ciphertext block pairs, where the corresponding plaintext
blocks had just 1 bit difference. Finally we compared 1.000.000 plaintext block pairs, where the
corresponding ciphertext blocks had just 1 bit difference.

Based on the generated samples we considered three different statistical questions to analyse
the distribution of the number of different blocks in the pairs. Clearly, in an ideal situation
–where we have an appropriate avalanche effect– one should get a binomial distribution with
parameters n = 16 and p = 1 − 1/256, which we shall call “reference distribution”. Firstly,
we simply estimated the 16 atoms of the distribution separately and calculated the corresponding
(99.9 %) confidence intervals to see the difference of the probabilities from the ones of the reference
binomial distribution mentioned above. Secondly, we certainly analised the goodness-of-fit of the
distribution by a χ2-test with binomial test distribution. Thirdly, assuming that the sample comes
from a binomial distribution (based on the results obtained to the previous questions) we calculated
the maximum likelihood estimation of the parameters and compared it to the parameters of the
reference distribution.

The results from the statistical estimations and tests show that the distributions of the 3 samples
are the same with the same parameters, their distribution coincides with the theoretical binomial
distribution, which means that the cryptosystem has an appropriate avalanche effect, and it is
protected against differential cryptanalysis.
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[2] Pál Dömösi and Chrystopher L. Nehaniv: Algebraic theory of automata networks: An introduction, ser. SIAM

monographs on Discrete Mathematics and Applications 11, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, (2005), doi 10.1137/1.9780898718492.

Hypothesis Testing and Multiplicity in the Evaluation of Cryptographic
Randomness

Haydar Demirhan, Hacettepe University

Joint work with Nihan Bitirim

Security of a cryptographic application is highly related to the quality of randomness of the mech-
anism used to cipher a message. A ciphering process used to encrypt a message is mainly based on
random numbers that have some special characteristics. In cryptographic applications, a special
subset of pseudo-random numbers, namely cryptographic random numbers, is employed. Because
pseudo-random numbers require a starting number sequence, which is called seed, they are re-
producible. Although cryptographic random numbers have the same weakness, they satisfy very
strong statistical requirements to be unpredictable. For a sequence of random variables, no auto-
correlation and independence both imply randomness. A strong randomness is the key requirement
for suitability of a random number generator (RNG) for use in cryptographic applications.

Because the quality of randomness constitutes the hearth of a ciphering process, it is very
important to apprehend the mechanism behind the statistical testing of randomness. The quality
of randomness of an RNG is evaluated and tested to confirm its suitability for use in encryption
processes. This evaluation is done by statistical randomness tests. Randomness test of an RNG
is conducted at two stages. First, empirical distribution of a test statistic is obtained and then
goodness-of-fit of the empirical distribution to a theoretical distribution is statistically tested. For
instance, it is possible to generate 2m different sequences with a set of m zeros and ones. In a
randomness test, whether these 2m sequences occur with equal probability or not is tested under
the null hypothesis “H0 : Sequences generated by the RNG of interest are random”. In the test
of this null hypothesis, probabilities of making both true and false decisions are controlled. In
the cryptography context, if we decide non-randomness of an RNG while it is actually generating
random numbers, we commit a Type-I error, which is also called false positive decision. If we
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decide randomness of an RNG while it is not generating random numbers, we commit a Type-II
error, which is called false negative decision and denoted by β. For a randomness hypothesis,
power (1− β) is the probability of deciding non-randomness of an RNG while it is actually non-
random. The power measures the chance of identifying a non-random RNG correctly. Related
with the Type-I error, significance level constitutes a pre-determined value for the Type-I error.
For an appropriate and scientific way of testing randomness of an RNG, these concepts should be
used properly. However, we identified misuses of these contexts in the literature of cryptography.
In this study, we mention two examples from Alani [1] and L’Ecuyer and Simard [5] and criticize
their use of hypothesis testing notions. Attracting attention to these issues is beneficial for a more
reliable testing of RNGs.

There are more than a hundred statistical tests that can be used to test randomness of a sequence
of numbers [4]. Because having tests with different characteristics is effectual in identification
of deviations from randomness in different cases, use of collections of tests as test batteries is
proposed in the literature [5, 6]. Each test in a test battery is applied separately to the RNG
under consideration at α level of significance. If all or a predetermined portion of tests conclude
that the RNG of interest generates random numbers, it is deduced that the degree of positive
belief on randomness of the RNG is strong [2, 3, 7].

Although this manner of testing seems to be reasonable, it causes a severe problem called
multiple testing problem in statistics. Multiple testing problem, also called multiplicity problem,
is one of the basic problems seen in multiple hypothesis testing. Let us have k tests in a test
battery and suppose that tests in the battery are conducted at a significance level of α. We have
the following result on the probability of having at least one significant result:

P({at least one significant result}) = 1− P({no significant results}) = 1− (1− α)k .

For example, with k = 7 and α = 0.05, we have a 30% chance of deciding that sequences
generated by an RNG of interest is not random in at least one of the tests, even if all the tests
actually indicate that the sequences are random. When we simultaneously use more than one
test to evaluate randomness of an RNG, the probability of rejecting the null hypothesis simply
due to chance increases with increasing values of k. It is apparently seen that one should regard
the multiple testing problem in statistical testing of cryptographic randomness. However, to the
best of our knowledge, there is no article in the cryptography literature focusing on the test of
cryptographic randomness under multiplicity. In this study, we discuss multiplicity problem in
terms of test batteries used to evaluate cryptographic randomness and figure impact of multiplicity
on the decisions reached by the use of test batteries.

Consequently, for a reliable and scientifically suitable hypothesis testing in such an important
and critical field, proper use of hypothesis testing notions and the problem of multiplicity in test
batteries should be regarded. With this motivation, we focus on statistical randomness tests,
test batteries, and use of basic statistical hypothesis testing context in testing the cryptographic
randomness. We review the literature on the cryptographic randomness tests and provide basic
information on test batteries as a whole. We focus on selection and interpretation of significance
level and multiple testing problem in detail, evaluate each test battery according to the impact of
conducting more than one statistical randomness test simultaneously and present some approaches
for the solution of multiple testing problem for test batteries.
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Cryptanalysis of POLAWIS

Mateusz Buczek, Enamor International

Abstract

POLAWIS is a family of block ciphers submitted for the CAESAR Competition by Arkadiusz
Wysokiski and Ireneusz Sikora. The algorithm is based on non-commutative quaternion field and
comes in two variants – one based on computations over finite field modulo prime number p and
the second in the field of real numbers.

In this paper I’ll propose some attacks on the first variant of the algorithm, which should be able
to break a full 8-round version or a reduced round version depending on key scheme with just
one known ciphertext/plaintext pair. I’ll also show an improved attack that will break any key
scheme (even with increased number of rounds) but will require more pairs of data. Some con-
cerning features of the algorithm will also be addressed that may deem it unusable if not resolved.
Keywords: POLAWIS, block cipher, cryptology, cryptanalysis, authenticated encryption.

1. Overview

POLAWIS is a family of block ciphers with variable block and key sizes. It has a rather atypical
construction, similar to ECB (Electronic Code Book). It uses some of the intermediate data from
one function call to modify the key used in the next call.

The algorithm has two modes of operation one based on computations over finite field modulo
prime number p and the second in the field of real numbers. Due to the fact that computation
over the field of real numbers are much more complicated and can be biased by implementa-
tion/architecture/system issues I’ll concentrate on the variant modulo p (though all the attacks
presented below should also work in the field of real numbers).

2. Block size and key size

As stated above POLAWIS uses computations modulo prime number p (or in the field of real
numbers with some degree of precision). The size n is the highest integer exponent of 2, such that
2n < p will determine the size of the block (or in the case of the other variant number of bits used
to hold the real number, for instance 64 – double precision number).
Message is divided into blocks of 6n bits consisting of six numbers modulo p designated as
a1, a2, a3, a4, b2, b3. The output block from the function call is slightly larger (to compensate
for numbers between 2n and p) and consists of 6n+ 6 bits.
Authors suggest that the prime p shouldn’t be smaller then 2256 and p = 2256 + 297 is proposed
as the base of operation in the function which sets the block size at 1536 bits.

There are two key schemes available:
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• Short-key scheme – key consists of two n-bit integers c1 and c4 which will be used in every
round

• Long-key scheme – key consists of 2k n-bit integers, where k is the number of rounds in
one POLAWIS function call (default number of rounds is 8 with 16 n-bit integers as key).
Every value is used only once, hence two times the number of rounds.

Long-key scheme is deemed as more secure by authors and suggested as the basic mode of operation
of POLAWIS. Key space is limited so that the first part of every round key is non-zero. With the
proposed p the size of the key varies from 512 bits to 4096 bits depending on number of rounds.

3. Unresolved issues and assumptions

Unfortunately the biggest problem with the algorithm is the lack of precise specification. Some
variables are unspecified or there are non described transitions between them.
For the rest of this paper I’ll work under some assumptions for non resolved issues in the paper
describing POLAWIS. Wherever there is a missing information or some degree of uncertainty I’ll
use best (security-wise) or the most possible explanation. This include:

• passing round output data to the input of next round,
• b4 variable will be chosen in a deterministic way, based on supplied a4,
• criteria (c21 + c22 + c23 + c24) 6= 0 (mod p) from paper is passed and if not, algorithm uses

next b4 to guarantee that this will be true.

We will also show all the further operations assuming p = 2256 + 297 and computations over finite
field modulo p.

4. Trivial attack on long-key scheme

First I’ll present a trivial attack on the “more secure” version of the algorithm using long key
scheme. For the attack we will need three pairs of one block message M and corresponding
ciphertext C encrypted under secret key K.
The idea is quite trivial: we simply iterate through all possible values of 14 first integers used in
the key which will require 214·256 = 23584 operations. With every set of values we run the first
seven rounds to get the input to the last one and, as we know the output – ciphertext C, we get a
system of six linear congruence equations (from the decoding algorithm). By solving it we get the
missing values of the key or if there is no solution, we assume that that the previous 14 numbers
are incorrect and move to the next. Of course this method will generate many possible keys as
the key space is larger then the block size by ratio of approximately 24096/21536 = 22560. This
means we will need at least 3 pairs of plaintext/ciphertext to get, with a rather good degree of
probability, the correct 4096-bit key K.

5. Attacks on short-key scheme

5.1. One round. First let’s look on the one round version of POLAWIS. The authors clearly
stated in the paper that with one pair of plaintext and ciphertext it is easy to get the key. It’s
easy to show that to acquire the correct key one doesn’t need a full input block. If we have a
ciphertext that has nonzero values of at least for example first and second element we can get the
key faster then with a full search with only first two elements of plaintext. We simply need to
solve a trivial system of equations.

5.2. Multiple rounds. Now let’s look at the multiple round variant of the algorithm with short-
key scheme. First attack described above won’t work if the algorithm uses only one key – we
cannot iterate through a part of it to single out the second one as they get intertwined really fast.
Still we can try to build a system of congruence equations to get the rest of the key while iterating
through all the possible values in second part.
After eight rounds we will get 6 equations with highest degree of monomials equal to 27 = 128
which will consist of at max 8256 monomials each. Of course even though we got only two
variables, solving this kind of system would be extremely hard. But there is a method to do so
that will require more plaintext/ciphertext pairs. Let’s designate every distinct monomial as new
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variable for the system. Now we got system of 6 linear equations with about 8256 variables and
solving this kind of system is trivial, but we will get at least 8250 free variables (parameters). The
question is how to eliminate them. And the answer is quite easy – get some more equations. The
easiest way to get them is to go through more pairs of plaintext/ciphertext. Every pair generates
6 new equations, but some of them might not contribute to solving the system by being linearly
dependent on previous equations. We will need at least 1375 pairs (most likely a bit more) to get
a Cramer’s system of equations which can be easily solved – we only need to get the values of
two variables corresponding to c1 and c4. What can one do when not enough pairs are available?
There is a tradeoff that will simplify the equations but at a great computation cost. We simply
iterate through all possible values of for instance c1 and treat them as known, which will make
the equations dependent on only one variable. Number of monomials will drop to 128 so we will
need only about 22 pairs to solve the system.

5.3. Chosen Ciphertext Attack (CCA). The attacks described in previous chapter can be
further improved by changing the attacking model from Known Plaintext Attack (KPA) to Chosen
Ciphertext Attack (CCA). We can build such a message that only two equations remain and they
have much lower number of monomials in them – less then 30, so the attack is possible with only
about 15 pairs of plaintext/ciphertext.
This attack also raises another concern with POLAWIS – if all input variables other then a1 and
a4 are set to 0 then only output variables x1 and x4 will be nonzero, no matter how many rounds
there will be and what key scheme we’ll use. This may lead to some new attacks on the scheme
and is a flaw of the construction (we can easily distinguish POLAWIS from a random function
generator). Another effect of this is that our attack not only falls into CCA category but also can
be described as Chosen Plaintext Attack (CPA).

6. Padding

As stated above the padding function works like this: “if the string is shorter, it must be sup-
plemented by selected constants”. Let’s name the constants pad1, pad2, ..., pad6 and assume that
each of them is of length n. If the message misses t-bits to fill a full block we simply take them
from as many padi as we require in ascending order. First we take the bits from pad1, then pad2
and so on starting from the most significant bit in every constant.
Now let’s look at two messages one consisting of four 256-bit values: a, b, c, d and the other
consisting of six: a, b, c, d, pad1, pad2. As we can easily see the first message is too short so the
padding algorithm will append it with first two constants pad1, pad2. Second message has an ideal
size so no padding is needed. Now we input two identical values into POLAWIS function and for
the same key we get the same result. This means it is impossible to unambiguously decrypt the
value.

7. Summary

As I showed above POLAWIS is susceptible to several kinds of attacks, that can reclaim key with
effort much lower then exhaustive search. Attacks work for full version of algorithm with both
long-key scheme and short-key scheme even with increased number of rounds. Further work may
show a better attack using advanced numerical methods but might require more effort in building
correct ciphertext for CCA. I also showed some issues concerning ambiguity of decryption of
certain set of messages, which if unresolved, results in algorithm being unusable in any protocols.
I strongly recommend that both problems should be resolved before moving using POLAWIS in
any kind of cryptographic protocol.
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A few notes on algebraic cryptanalysis
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1. Introduction

The algebraic cryptanalysis tries to solve cryptanalytic problems directly through their alge-
braic representation. One of the basic types of algebraic attacks is just to model an encryption
with Boolean formula in conjunctive normal form (CNF). The unknown literals are mapped to
internal state of the cipher during the encryption process, inputs, outputs and potential key bits.
Then a SAT solver is applied to the CNF. The attacker can extract the key bits from the positive
proof found by the solver (if it exists). Although the SAT problem is hard in general, there are
some instances [1] when algebraic cryptanalysis using SAT solvers was found to be more efficient
than brute force attacks.

In our contribution we focus on three particular practical issues arising when using SAT solvers
(and other algebraic cryptanalytic tools in general). In the first part, we remark on the improve-
ments we can get when keys are not taken from a uniform random distribution, but are “password
based”. In the second part, we focus on issues that are involved in distributing the algebraic
attacks to many computational nodes. In the final part, we remark on attacks in multiple key
scenario in which the attacker wants to recover just one out of many keys used for different en-
cryptions.

All experiments are concluded on the simple example of round reduced DES. We remark that
basic algebraic attacks are typically successful only against already weak ciphers. However, we can
apply many of these basic techniques for more advanced scenarios involving algebraic complexity
reduction [2], or in combination with other types of attacks [4, 5].

2. Password based keys

A basic algebraic attack encodes individual key bits as literals in some CNF formula. The proof
of satisfiability for the CNF formula representing an individual encryption is provided by the SAT
solver. Attacker can then determine values of the key bits according to the encoding used. E.g.,
a positive literal in the proof means that the corresponding key bit must have value 1.

Now let us suppose that a simple cipher is used for password storage in some custom “security”
module. We can make an assumption on key space, such as that each key is chosen as a string
of eight lowercase letters ‘a’–‘z’, ASCII encoded into 56 DES key bits. The assumption can be
then encoded as a CNF formula, and added to the encryption formula (with AND operator). If
the password is indeed a string of lowercase letters, SAT solver provides a proof with the key bits.
Otherwise, it provides the answer that formula is unsatisfiable.

Our experiments show that estimated complexity of the attack for reduced key space scenario
in proportion to the brute force attack on reduced key space is similar to the ratio of estimated
complexity of the attack on the whole cipher to the brute force attack on the whole key space.
However, for very simple cases, such as 4-round DES and lowercase letters, we get additional
reduction in complexity from very weak key diffusion.

This work was supported by project VEGA 1/0173/13. Part of the experiments were run on Slovak infrastructure

for high performance computing under project Algebraic cryptanalysis.
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3. Distributed computing

A basic algebraic attacks can be combined with partial key guessing. We can e.g., guess 28
bits of the DES key, and try to find the rest with a SAT solver. If the guess was incorrect the
SAT solver provides answer “unsatisfiable”, otherwise it provides the proof containing the rest of
the key bits. In a distributed computing environment we can use individual guesses as a basis for
distributing parallel tasks.

We have realised a series of experiments with six-round DES and MiniSat solver in distributed
computing cluster. Our goal was to check the effects of task distribution on the (estimated) total
time of algebraic attack. The experiments confirm the intuition that splitting the total computa-
tion to many tasks by guessing more individual bits increases the overall complexity of the attack,
even excluding communication overhead. We suspect that this is mainly caused by reducing the
efficiency of heuristics and learning methods in the solver by limiting the key space. Further
experiments confirm that deterioration in efficiency caused by task distribution can be reduced
by better selection of key bits that are being guessed. Moreover, in the large experiment, a good
selection of individual bits to guess is much more important than the number of key bits guessed.

4. Multiple key scenario

In some instances, an attacker can have access to many individual P-C pairs (P1, C1) . . . (Pn, Cn),
encrypted by potentially different keys K1, . . . ,Kn. In multikey scenario the attacker wants to
find any one of the keys K1, . . . ,Kn. In our work, we do not use some specific properties of the
cipher to provide one suitable pair with algebraic weakness such as in [3]. Instead, we encode the
problem in a different way: We add formulas that encode I/O relations (P1∧C1)∨· · ·∨ (Pn∧Cn),
a single formula for internal state and key. Now, the SAT solver can produce a proof using any of
the keys K1, . . . ,Kn. This has an advantage over brute force attack, when we need to check each
pair and each candidate key, until at least one suitable pair is found.
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Revocation in Distributed ABE-based Secure Storage using
Indistinguishability Obfuscation

Máté Horváth5, Laboratory of Cryptography and System Security (CrySyS Lab), Budapest
University of Technology and Economics

Secure storage in clouds. Cloud computing is an emerging paradigm of information technology,
by which computer resources are provided dynamically via Internet. Besides cost savings, flexibility
is the main driving force of outsourcing for instance data storage, although on the other hand it
raises the issue of security, which leads us to the necessity of encryption. In order to fulfil the new
requirements of the cloud environment, that traditional cryptographic protocols handle inflexibly,
new schemes have appeared.
Attribute-Based Encryption (ABE) was proposed by Sahai and Waters [SW05] as the general-
ization of Identity-Based Encryption. Contrary to traditional public-key cryptography, ABE is
intended for one-to-many encryption in which ciphertexts are not necessarily encrypted to one
particular user, but for those who fulfil certain requirements. These requirements are related to
attributes and access policies, namely decryption is possible if and only if the attributes satisfy
the access policy. Ciphertext-policy ABE, one of its two basic types, embeds the access policy into
the ciphertext, which means that the encryptor can define requirements that the decryptor needs
to fulfil in order to decrypt the ciphertext. By its design, it is a useful tool for access control to
data, stored in the cloud, although it must be adjusted to some specific requirements.
One such requirement is the need for a tool for changing user’s rights, which is essential when
unexpected events occur. An occasion when someone’ rights has to be revoked can be dismissal or
the revealing of malicious activity. However, revocation is especially hard problem in ABE-based
schemes, because different users may hold the same functional secret keys related to the same
attribute set.

User revocation in CP-ABE. Indirect user revocation, based on the attributes, has multiple
drawbacks. As different users might be identified by the same attributes, the keys of all those
users have to be updated, who had any common attributes with the malicious user. In case of
re-encryption, the drawback is similar: all ciphertext that used any of the affected attributes in
the access policy must be re-encrypted, even if the revoked user could not decrypt that specific
ciphertext before. This results in computational and communicational burden which can easily
lead to a performance bottleneck.
Another approach avoids these inefficiencies by identifying malicious users directly, based on a
unique “identity attribute” owned by each user. A list of revoked user’s “global IDs” (GID) is
also embedded in the ciphertext, besides the access policy and negation of theses specific attributes
is provided. As a result, a potential decryptor must satisfy the access policy, but also needs to
compare his GID with the revoked ones in the ciphertext. Decryption is possible only if no
correspondence was found and the policy is satisfied by the owned attributes. Instead of putting
extra burden of key regeneration on authorities, the extra computation caused by revocation
is distributed between the largest set of parties, the users, during encryption and decryption.
Another benefit is that lazy re-encryption is achievable only by extending the revoked user list
(RL) and using the fresh list for encryption, after data was edited. However long revocation lists
and immediate re-encryption still can cause a serious burden.

Indistinguishability obfuscation. The intuitive goal of obfuscation is to make programs “un-
intelligible” while preserving their functionality. One possible approach to capture the unintelli-
gibility property was proposed by Barak et al. in their seminal work [BGI+01]. The definition
of indistinguishability obfuscation (iO) requires that if two programs of similar size compute the
same function, then their obfuscations should be indistinguishable. This notion not just evades
the negative results of the same paper, but in 2013 Garg et al. [GGH+13] managed to give the
first candidate construction for general purpose obfuscation, according to this definition (about

5mhorvath@crysys.hu
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the latter development of the iO constructions see the survey of [Hor15b]). Since then, iO turned
out to be an extremely useful cryptographic primitive, that already was used for solving long-
standing open problems such as the constructions of functional encryption [GGH+13], witness
encryption [GGSW13] or deniable encryption [SW14]. However, the breakthrough also posed a
bunch of further questions about the security guarantees, efficiency and application approaches.
The difficulty, from the point of view of the last, is that iO does not give an intuitive guarantee
that the obfuscated version practically “hides information”. In our application we partly use the
so called “punctured programming” approach of Sahai and Waters [SW14] to bridge this gap.

Contribution. We concentrate on access control for data, stored in the cloud thus we are going to
make use of the results of [Hor15a], that allows multiple, independent attribute authorities and ID-
based user revocation. Such systems that use a centrally controlled revocation list, the ciphertexts
will embed a growing sequence of revocation sets. Thus the decryptor is always forced to prove
that his GID is not identical with some other GIDs. However the revocation list will always
contain partly the same GIDs, the “proof” must be prepared separately for each ciphertexts in
order to decrypt them. Although it is obviously a waste of computation, this property is common
in the list-based revocation systems like [LSW10, LXZ13, Hor15a]. The reason is that in order to
avoid the need for multiple proofs, some kind of coordination between different encryptors would
be necessary. We use a developing new cryptographic primitive, indistinguishability obfuscation,
to reduce both the ciphertext length (in case of large number of revoked users) and the necessary
computation for decryption by allowing the reuse of proofs of not being a specific user.
Our main contribution is that we avoid parallelisms by securely delegating computation of some
revocation related parameters of ciphertexts to the cloud service provider (CSP ), thus the extra
burden is divided between all parties, not only between the users or the authorities, as before.

Theorem (informal). In multi-authority CP-ABE with identity-based user revocation, it is possible
to securely delegate the revocation related computation of encryption to a third party.

It not just solves the above mentioned problem of coordination, but also allows immediate partial
re-encryption of ciphertext parameters with an extended RL, in such a way that after re-encryption
no user from the refreshed list can retrieve the data, who did not decrypted it previously. This
approach has the additional benefits, that the CSP who re-encrypts, cannot gain any information
from the process, as the ciphertext is not decrypted and the attribute related parameters do not
even have to be modified.
Although these results aim to increase efficiency, at the moment they are far more inefficient than
other methods, because of iO, the used underlying primitive, which is a promising new tool that
still faces initial difficulties. Regarding these, our work stands in the line of recent studies that
motivate further research on iO by representing its extreme usefulness, now also in the field of
user revocation in ABE-based access control.

Our technique. Here we only highlight the main ideas and refer to the scheme in [Hor15a] as
our starting point, furthermore we use the same notions for the ease of expression. The original
ABE ciphertext there, contains functionally three kinds of parameters. The hidden data, blinded
with a random s ∈ Zp, the secret shares of s, that can be extracted using a satisfying attribute
set, although the reconstruction of the secret will also reconstruct an other value s∗ ∈ Zp, that
will still hide s. This redundant value can be recovered from the last two parameters, if there is no
correspondence between the elements of RL an the decryptor’s GID and used to gain s in order
to recover the data:

CT =

Shares of s︷ ︸︸ ︷
( C0 , {C1,x, C2,x, C3,x}x=1...n, {C∗1,k, C∗2,k}k=1...r),︸︷︷︸ ︸︷︷︸ ︸ ︷︷ ︸

Data hidden with s Shares of s∗ Shares of s∗=
∑r

1 sk

where x runs on the rows of the access matrix and k on the indexes of RL. It can be seen that
a revocation event affects C∗1,k, C

∗
2,k and C3,x. As the s∗ secret must be refreshed, C3,x has to be

updated for all x = 1 . . . n. However if the other two parameters could be somehow computed
centrally and used in all ciphertexts then only the values corresponding to the newly revoked users
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ought to be generated. Based on this observation, we introduce a dummy revoked user with GID∗0
and divide the previous ciphertext into two parts:

CTuser =

Shares of s︷ ︸︸ ︷
( C0 , {C1,x, C2,x, C3,x, C

′
3,x, C

′′
3,x}x=1...n, C

∗
1,0, C

∗
2,0),︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Blinding with s Shares of s∗ Share of s∗−∑r
1 sk

CTcloud =

sk shares for revoked GID∗
k︷ ︸︸ ︷

{C∗1,k, C∗2,k}k=1...r

after which for k ≥ 1 it is enough to compute C∗1,k, C
∗
2,k once and use them in each ciphertexts

(e.g. as a part of the revocation list), so the decryptor also have to extract sk-s only once and
later can reuse them. As it can be obtained only in a blinded form (with a secret identifier of
the user), only minor modifications on the security proof of [Hor15a] are needed in order to prove
security of this modification in the random oracle and generic bilinear group models.
To enable re-encryption by the CSP without information leakage, the CSP need to use s∗ and its
secret shares, during the computation of parameters without gaining their values. To achieve this,
we construct three algorithms, the iO obfuscated versions of which will be given to the the CSP .
The first creates C∗1,r+1, C

∗
2,r+1 parameters for a newly revoked GID∗r+1. The second generates a

new s∗ for a specific ciphertext, together with the dummy share of GID∗0 , that is adjusted to be

s0 = s∗ −∑r+1
1 si. Finally the last one updates C3,x, C

′
3,x, C

′′
3,x to contain the shares of the fresh

s∗.
When constructing these algorithms we merge two approaches. With the “two key” encryption
technique (in spirit similar to the one used in the bootstrapping of iO in [GGH+13]), we ensure
the secrecy of those values that must be transmitted between the algorithms or between encryptor
and the CSP . The generated pseudo-random values, like secret exponents are hidden using the
“punctured programming approach” of Sahai and Waters [SW14]. With the help of these, we
construct alternative, functionally equivalent programs, which either use different keys or which
simply does not contain the interesting information. Equivalence is proved through a hybrid
argument after which, from the properties of iO, security of the algorithms follows.
The encryption in this scheme is partly done by the CSP . First the user chooses a random s∗ and
s0 for the dummy GID∗0 , so decryption is not possible as s0 is not a share of s∗. However in the
cloud, the ciphertext can be “re-encrypted” (or completed) by the CSP , using the two algorithms
for re-encryption, that creates the correct parameters such that s∗ =

∑r
0 sk. The decryptor then

always need to obtain s0 (that is always possible as GID∗0 is not a real user, only a dummy one),
and further GID comparisons are necessary only when a new element was added to the revocation
list since the last decryption of any ciphertext.
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Access structures induced by uniform polymatroids

Renata Kawa, University of Silesia

Joint work with Mieczys law Kula

A secret sharing scheme, introduced by Shamir [1], is a method of dividing a secret data s among
a finite set P = {p1, . . . , pn} of participants in such a way that only certain subsets of participants,
called the authorized subsets, can reconstruct the secret by pooling together their private shares
of information. The collection Γ of authorized subsets is called the access structure of the secret
sharing scheme. It is natural to require that Γ is monotone, that is, if A ∈ Γ and A ⊆ B ⊆ P ,
then B ∈ Γ . Let the set of minimal elements of an arbitrary family Λ ⊆ 2P be denoted as min Λ.

It is clear that if P is fixed and a secret sharing scheme for P is given, then its access structure
is uniquely determined. However, investigations concerning secret sharing scheme problems also
refer to the situation in which a monotone family of sets of P is given and a goal is to find a
scheme realizing it.

A secret sharing scheme is called perfect if

(1) every authorized set of participants can reconstruct the secret by pooling together their
private shares of information,

(2) every unauthorized set of participants cannot reveal any information about the secret by
pooling together their private shares.

A secret sharing scheme is called ideal if it is perfect and |Ui| = |S|, where S is the set of
all possible values of the secret s and Ui is the set of all possible values of the share ui of i-th
participant.

An access structure Γ is called ideal if there exists an ideal secret sharing scheme such that Γ
is its access structure.

The most desired schemes are ideal. It is proven in [2] and [3] that for every monotone family
of sets of participants there exists a perfect scheme realizing it. Unfortunately, perfect schemes
constructed by the authors of this statement are not ideal, each share is a vector with many entries.
It is also known that there exist monotone families of sets of participants which are not realized
by any secret sharing scheme that is both ideal and perfect (see [3], p. 33, Theorem 3).

From now on we consider only perfect secret sharing schemes. One of many branches of in-
vestigations concerning secret sharing schemes is studying a hierarchy introduced by an access
structure. When we have fixed an access structure Γ , we say that the participant p is hierarchi-
cally superior or equivalent to the participant q, and we write q �Γ p, if∧

A⊆P\{p,q}
A ∪ {q} ∈ Γ ⇒ A ∪ {p} ∈ Γ.

If q �Γ p and p �Γ q, then we say that p and q are hierarchically equivalent and we write p ∼Γ q.
For a partition Π = {P1, . . . , Pm} of the set P , an access structure Γ on P is said to be Π-partite

if every two participants in the same block Pi are hierarchically equivalent. In the set Π we can
define the following relation:

Pi �Γ Pj ⇐⇒
∨
q∈Pi

∨
p∈Pj

q �Γ p.

In such a situation we say that block Pj is hierarchically superior or equivalent to the block Pi.
This relation is reflexive and transitive, but it does not have to be antisymmetric. Such a relation
is called pre-order. If Pi �Γ Pj and Pj �Γ Pi, then the blocks Pi and Pj are called hierarchically
equivalent and we write Pi ∼Γ Pj . If Pi �Γ Pj or Pj �Γ Pi, then the blocks Pi and Pj are said to
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be comparable. If Pi �Γ Pj and Pi 6∼Γ Pj , then we say that the block Pj is hierarchically superior
to the block Pi and we write Pi ≺Γ Pj . We say that Pi is a maximal element in Φ ⊆ Π if for all
Pj ∈ Φ such that Pi �Γ Pj we have Pi = Pj . We say that Pi is a minimal element in Φ ⊆ Π if for
all Pj ∈ Φ such that Pj �Γ Pi we have Pi = Pj .

Generally Π-partite access structures are called multipartite. A Π-partite access structure Γ is
said to be hierarchical if Pi and Pj are comparable for every i, j ∈ {1, . . . ,m}. A Π-partite access
structure Γ is said to be compartment if Pi and Pj are not comparable for every i, j ∈ {1, . . . ,m}.
Hierarchical ideal access structures are completely characterized in [8]. As far as compartment
ideal access structures are concerned, only some specific families are analyzed and classified. There
are also some results for Π-partite access structures with small number of blocks. Notice that
hierarchical and compartment access structures are two extreme cases of a wide range of access
structures in which we consider partial hierarchy in a set of blocks. In our investigations we
are particularly interested in studying multipartite access structures such that are different from
hierarchical and compartment.

Let us remind the connection between matroids and access structures presented in [4]:

Theorem 1. Each ideal access structure is a port of uniquely determined matroid M = (E, r).

In the above theorem a port of a matroid is a family described as follows:

Γp0(M) = {X ⊆ E \ {p0} : r(X ∪ {p0}) = r(X)},
where p0 is a fixed element of E.
We should also remember that generally a port of an arbitrary matroid is an access structure,

but it does not have to be ideal.
It is very convenient to present sets in Π-partite access structure as vectors. For a partition

Π = {P1, . . . , Pm} of a set P and for every A ⊆ P we define a mapping π : 2P → Nm0 given by

π(A) = (|A ∩ P1|, . . . , |A ∩ Pm|).
It is easily seen that if π(A) = π(B) and A ∈ Γ , then B ∈ Γ . That is, Γ is completely determined
by the partition Π and the set of vectors π(A), A ∈ Γ .

To present our main tool and results, we need to introduce more definitions.

Definition 2. A polymatroid Z is an ordered pair (Q, h) consisting of a finite set Q and function
h : 2Q → N0 which fulfils the following conditions:

(1) h(∅) = 0.
(2) If X ⊆ Y ⊆ Q, then h(X) ≤ h(Y ).
(3) If X,Y ∈ Q, then h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X) + h(Y ).

Notice that if we replace condition (1) by h(X) ≤ |X| for all X ⊆ Q, then Z is a matroid.
Let us adopt the following notations: Jm = {1, . . . ,m}, J ′m = {0, 1, . . . ,m}.

Definition 3. A completion of a polymatroid Z = (Jm, h) is a polymatroid Z ′ = (J ′m, h
′) such

that h′
∣∣
Jm

= h and h′({0}) = 1.

It is important to notice that a completion of a polymatroid is not determined uniquely. It is
also easy to check that

∆(Z ′) := {X ⊆ Jm : h′(X ∪ {0}) = h′(X)}
is a monotone family of subsets of Jm.

If Z = (Jm, h) is a polymatroid and X ⊆ Jm, then we define the following family:

B(Z, X) = {v̄ ∈ Nm0 : supp(v̄) ⊆ X,∀Y⊆X |v̄Y | ≤ h(Y ), |v̄X | = h(X)},
where |v̄Y | =

∑
i∈Y v̄i.

The following theorem, proved in [7], is crucial for our purposes and shows the connection
between polymatroids and access structures.
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Theorem 4. Let Π = {P1, . . . , Pm} be a partition of a set P and let Γ be a Π-partite access
structure. Then Γ is a matroid port if and only if there exist a polymatroid Z = (Jm, h) such that
h({i}) ≤ |Pi| for every i ∈ Jm, and a completion Z ′ such that

minΓ = min{ū ∈ B(Z, X) : X ∈ ∆(Z ′)}.

We wish to use this theorem to investigate the partial hierarchy in the set of blocks of a
multipartite access structure determined by a matriod port.

It is known that tripartite access structures that are matroid ports, are ideal (see [7]). Com-
bining this statement with our results we can obtain an ideal access structure which is neither
hierarchical nor compartment (see the table at the end of the abstract).

Our investigations are restricted to uniform polymatroids.

Definition 5. A polymatroid (Q, h) is called uniform if |A| = |B| =⇒ h(A) = h(B) for all
A,B ⊆ Q.

For simplicity of notation, we write hi = h(A) if A ⊆ Q, |A| = i. It follows from monotonicity
that a sequence (hi)i=0,1,...,|Q| is not decreasing. Let us denote gi = hi+1 − hi. From submodu-
larity it occurs that a sequence (gi)i=0,1,...,|Q|−1 is not increasing. We managed to prove a simple
characterization of uniform polymatroids.

Lemma 6. Let (gi)i=0,1,...,m−1 be a not increasing sequence of non-negative integers.
Let (hi)i=1,2,...,m be a sequence such that h0 = 0 and hi = hi−1 + gi−1 for i = 1, . . . ,m. Then

(Jm, h), where the function h : 2Jm −→ N0 is defined by h(A) = h|A|, is a uniform polymatroid.

The following theorems summarize our current results. They have a common set of assumptions:
Let Π = {P1, . . . , Pm} be a partition of a set P . Let Z = (Jm, h) be a uniform polymatroid such
that hm ≤ |Pi| for every i ∈ Jm and let Z ′ be its completion. Let Γ be an access structure such
that

minΓ = min{ū ∈ B(Z, X) : X ∈ ∆(Z ′)}.

Theorem 7. If A ∈ min ∆(Z ′), |A| = k, h1 > 1 and gk > 0, then the block Pj is not hierarchically
superior or equivalent to the block Pi for all i ∈ A and j ∈ Jm \A.

Corollary 8. If 1 < h1 < h2 and {i} ∈ ∆(Z ′) for some i ∈ Jm, then Pi is a maximal element in
the set (Π,�Γ ).

Corollary 9. If A ∈ min ∆(Z ′), j ∈ Jm \ A, h1 > 1, gk 6= 0, then Pj is minimal in the set
({Pj} ∪ {Pi : i ∈ A},�Γ ).

Theorem 10. Assume that there exist A ∈ min ∆(Z ′), |A| ≥ 2, and elements i ∈ A, j ∈ Jm \ A
such that Pj and Pi are comparable. If gm−1 > 0, then g1 = · · · = gm−1.

Theorem 11. Assume that there exist A ∈ min ∆(Z ′) and elements i ∈ A, j ∈ Jm \A such that
Pj and Pi are comparable. If gm−1 > 0, then h1 = g1 = · · · = gm−1.

Corollary 12. If h1 = g1 = · · · = gm−1, then {A} = min ∆(Z ′), for a suitable A ⊆ Jm. If
A 6= Jm, then Pi is hierarchically superior to Pj for all i ∈ A and j ∈ Jm \ A. Otherwise the
access structure is compartment.

Theorem 13. If gm−1 > 0 and Γ is not compartment, then min ∆(Z ′) = {k} for some k ∈ Jm
or h1 = g1 = · · · = gm−1.

Corollary 14. If a Π-partite access structure is determined by a uniform polymatroid, then the
length of every chain in Π is not greater than 1.

In order to illustrate applications of the above results, we enclose the following table. It presents
partial hierarchy among blocks of tripartite access structures.
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1 2 3 4 5 6 7

g 1
=

0
g 2

=
0

1
≤
g 1
<
h
1

g 2
=

0

1
≤
g 1

=
h
1

g 2
=

0

1
≤
g 1
<
h
1

1
≤
g 2
<
g 1

1
≤
g 1
<
h
1

1
≤
g 2

=
g 1

1
≤
g 1

=
h
1

1
≤
g 2
<
g 1

1
≤
g 1

=
h
1

1
≤
g 2

=
g 1

1 min ∆ = {{1}} – – – G G G g

2 min ∆ = {{1}, {2}} – D – A – – –

3 min ∆ = {{1}, {2}, {3}} p A – A A – –

4 min ∆ = {{1}, {2, 3}} – G G A – A –

5 min ∆ = {{1, 2}} – – – A D A D

6 min ∆ = {{1, 2}, {1, 3}} – – – A – A –

7 min ∆ = {{1, 2}, {1, 3}, {2, 3}} – A A A – A –

8 min ∆ = {{1, 2, 3}} – – – A A A A

The legend:

D G A

P3

P1 P2 P1

P2 P3
P1 P2 P3

p g

P1 ∼Γ P2 ∼Γ P3

P1

P2 ∼Γ P3 .
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On complexity of secret sharing schemes
on access structures with rank three

Péter Ligeti, Eötvös Loránd University, Department of Computer Algebra

In a secret sharing scheme a piece of information – the secret – is distributed among a finite set of
participants, such that only some predefined coalitions can recover it. This set of subsets is called
access structure, which is supposed to be monotone, hence the system can be characterized by
its minimal elements. Within this paper we consider access structures with rank three, i.e. with
minimal subsets of size at most three and compare them with rank two or graph based schemes.

The efficiency of a scheme is measured by the amount of information the most heavily loaded
participant must remember. For a given system, one of the most interesting problem of this topic
is the exact determination or at least the estimation of this amount, called complexity. Secret
sharing schemes with complexity 1 are called ideal schemes.

In contrast to the case of graph-based schemes, very little is known about the complexity of
higher rank access structures. Within this paper we outline the known estimation methods for
graph-based schemes and review the possible generalizations. Furthermore, we present several
ideal schemes of rank three using tools from matroid theory and determine the complexity of
small access structures. Especially, we determine the complexity of a large family of graphs by
using star-covering and the entropy method.
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Information

Lunch. Participants of CECC 2015 will be given vouchers for the university canteen “Mensa”,
which is located in Universitätsstraße 90, opposite to Café Pazzo and Raiffeisenlandesbank; it is
open Mon–Fri from 11:30 to 14:00.

Places to eat, shops and other useful locations around the university.

• University Cafeteria
Central hall of the main building, Mon–Fri 8:00–14:00

• Bakery “Wienerroither”
Universitätsstraße 98, Mon–Fri 6:30–18:30, Sat–Sun 6:30–14:00

• Restaurant “Mittagstisch”
Lakeside Park B06, Mon–Fri 11:00–14:00

• Restaurant “Alles Gute”
Lakeside Park B01, Mon–Fri 07:30–13:00

• Restaurant “Uni-Wirt”
Nautilusweg 11, Tel.: +43 463 218905, Mon–Sat 8:00–24:00

• Café “Como”
Nautilusweg 12, Mon–Fri 7:00–19:00, Sat 8:00–18:00

• Café and Bar “Pazzo”
Universitätsstraße 33, Mon–Sun 7:00–24:00

• Osteria “Panta Rhei”
Universitätsstraße 25, Tel.: +43 699 11404279, Mon 18:00 – 22:00, Tue–Fri 11:30 – 14:00
and 18:00 – 22:00, Sat 18:00 – 22:00

• Restaurant “Uni Pizzeria”
Universitätsstraße 33, Tel.: +43 463 25088, Mon–Sat 11:00–23:00, Sun 11:00–22:00

• Restaurant “Chinesischer Garten”
Villacher Straße 221, Tel.: +43 463 220139, Mon–Sun 11:30–14:30 and 17:30–23:30

• Restaurant “Maria Loretto”
Lorettoweg 54, Tel.: +43 463 24465 (reservation recommended), Mon–Sun 11:00–24:00

• Restaurant “Villa Lido - Pizzeria Trattoria”
Friedlstrand 1, Tel.: +43 463 210712 (reservation recommended), Mon–Sun 9:00–23:30

• Drugstore “Bipa”
Universitätsstraße 37, Mon–Fri 8:00–19:00, Sat 8:00–18:00

• Supermarket “Spar”
Villacher Straße 171, Mon–Fri 7:40–20:00, Sat 7:40–18:00

• Supermarket “Hofer”
Villacher Straße 181, Mon–Fri 7:40–20:00, Sat 7:40–18:00

• Bank “Raiffeisenlandesbank Kärnten”
Nautilusweg 11, Mon–Thu 8:00–12:30 and 13:30–15:30, Fri 8:00–15:30

• Bank “Kärntner Sparkasse”
Nautilusweg 12, Mon–Fri 8:00–12:30 and 14:00–16:00

• Post office
Lakeside B01 West, ground floor, Mon–Fri 8:00–12:00

• Newspapers, magazines, cigarettes (“Trafik”)
Universitätsstraße 23, Mon–Fri 7:30–12:30 and 15:00–18:00, Sat 7:30–12:30

• Pharmacy “Uni-Apotheke”
Universitätsstraße 23, Tel.: +43 463 210349, Mon–Fri 8.00–18:30, Sat 8:00–12.00

Taxi. These are the main companies that run a taxi service in Klagenfurt.

Taxi-Funkzentrale: +43 463 31111 (http://www.taxi-klagenfurt.at)
Taxi Erich: +43 463 46276
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Taxi 2711: +43 463 2711 (www.taxi2711.at)
Taxi 23222: +43 463 23222 (www.taxi-23222.at)
Taxi 22277: +43 463 22277 (www.taxi-22277.com)
Taxi Funkkette: +43 463 281111
Taxi Klagenfurt: +43 463 499799 (www.taxi-klagenfurt.com)
Taxi Weratschnig KEG: +43 664 2410444 (www.taxi-weratschnig.at)
Lindwurmtaxi: +43 676 4419077 (www.klagenfurter-taxi.com)

Typical taxi fares (approximately)
Airport to university: e 20
Airport to city center: e 14
City center to university: e 13

Train station to university: e 15
Train station to city center: e 9

Tourist Information. The tourist information office of Klagenfurt can be found in the town hall
(Rathaus) in Neuer Platz.

Tel.: +43 463 5372223
E-mail: tourismus@klagenfurt.at
http://www.info.klagenfurt.at/

Mon–Fri 8:00–18:00, Sat 10:00–17:00, Sun 10:00–15:00

Swimming. The University of Klagenfurt is located near the beautiful lake Wörthersee. There
are two public swimming areas in the proximity of the campus: Strandbad Klagenfurt and Strand-
bad Maria Loretto.

Opening hours: Mon–Sun from 8:00 to at least 19:00 (depending on the weather)
Daily ticket: e 4.30 (from 15:00 e 3.10, from 19:00 e 2.00)
2-hour ticket: e 3.10

Emergency numbers (Notruf).

• European emergency number: 112
• Fire brigade (Feuerwehr): 122
• Police (Polizei): 133
• Ambulance (Rettung): 144





https://www.math.aau.at/cecc2015/


