
 Ç Å ¡ 1 of 50

"Lazy Thinking":
 A Method

 for the Automated Invention

of Algorithms

Bruno Buchberger
Research Institute for Symbolic

Computation
Johannes Kepler Universität, Linz, Austria

2 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

 Ç Å ¡ 2 of 50

A Non-Trivial Algorithm: Gröb-
ner-Bases

"Lazy Thinking"

Synthesis of Gröbner-Bases
Algorithm

 Ç Å ¡ 3 of 50

What Are Groebner Bases?

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 3

What Are Groebner Bases?

F = 9x2 y - 2 x z + 5 y - 3,

x y2 + x2 + z ,

x z - y2 + 2 x - 1=
9-3 + 5 y + x2 y - 2 x z, x2 + x y2 + z, -1 + 2 x - y2 + x z=
GroebnerBasis@FD
9146302 + 448564 z + 502763 z2 + 242 180 z3 + 39771 z4 -

6231 z5 - 2448 z6 + 168 z7 + 144 z8 + 16 z9, 104 376 175362 406 +

1599126115499 x + 285345650 746 687 z + 259 094 430 962 640 z2 +

81019429651948 z3 - 562 741 124 769 z4 - 4290 216 888 948 z5 -

216539112184 z6 + 199291173 968 z7 + 31903 397 104 z8,

-29252096339198961 + 996255 569955 877 y - 79 297437 999 899 296 z -

73993371970407310 z2 - 24 666 034 475 337 294 z3 -

250747610968661 z4 + 1288 154 187 383 705 z5 +

85610415996090 z6 - 58609 022 325 772 z7 - 10 267 480 080 072 z8=
 Ç Å ¡ 4 of 50

Application Example: "Algebraic Biology" 2007, RISC, S. Petrovic et

al.

Gegeben:

Gesucht:

4 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

x, y, z, ...: Probabilities at the nodes of the "similarity tree".

 Ç Å ¡ 5 of 50

Application Example: Software Reverse Engineering, 2007, RISC, T.

Jebelean, D. Kapur, ...

Given: Programm.

Find: Specification.

Given: Program, specification.

Find: Loop invariants for the formal verification.

x, y, z, ...: the values of the program variables.

 Ç Å ¡ 6 of 50

Application Example:

Break Cryptographic Codes,

2003, Paris VI, J.C. Faugere et al.

Given: Input - Output test examples

Find: the key, e.g. 011000101011011....11011101.

x, y, z, ...: the bits in the key.

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 5

x, y, z, ...: the bits in the key.

 Ç Å ¡ 7 of 50

Application Example: "Algebraic Oil",

Shell 2005, RISC 2009

Given: Observations about oil flow in dependence on the position of the
valves.

Find: The coefficients of a polynomials systems, that describes the
behavior.

x, y, z, ...: the position of the valves.

 Ç Å ¡ 8 of 50

Relevance of Groebner Bases

6 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Relevance of Groebner Bases

ç Dozens of (difficult) problems on non-linear systems can be reduced
to the construction of Groebner bases

 (~ 1000 papers, ~ 30 books, own AMS Classification number:
13P10).

ç Some of these problems were open for many decades.

ç Solution of these problems is possible for Groebner bases, because
Groebner bases have some nice properties (canonicality, elimina-
tion, syzygy property).

ç Therefore the construction of Groebner bases is an important
problem.

 Ç Å ¡ 9 of 50

Definition of Gröbner Bases (BB 1965)

is–Gröbner–basis@GD � is–confluent@ ®G D.
 ®G ... a division step.

 Ç Å ¡ 10 of XXX

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 7

Confluence of Division ®G

is–confluent@ ® D : � "
f1,f2

Hf1 «* f2 Þ f1¯*f2L

f1f2

 Ç Å ¡ 11 of XXX

Example of a Property of Gröbner Bases: Elimination Property

A Gröbner bases G (w.r.t. a lexicographic ordering) is "triangularized" (see
the example at the beginning)!

This allows to obtain all the solutions of G by successive elimination.

F = 9x2 y - 2 x z + 5 y - 3,

x y2 + x2 + z ,

x z - y2 + 2 x - 1=

8 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

GroebnerBasis@FD
9146302 + 448564 z + 502763 z2 + 242180 z3 +

39771 z4 - 6231 z5 - 2448 z6 + 168 z7 + 144 z8 + 16 z9,

104376175362406 + 1599126 115499 x + 285345650 746687 z +

259094430962640 z2 + 81019429 651948 z3 - 562 741124769 z4 -

4290216888948 z5 - 216539 112 184 z6 + 199291 173968 z7 + 31 903397104 z8,

-29252096339198961 + 996255 569955877 y - 79297 437999 899296 z -

73993371970407310 z2 - 24 666 034475 337294 z3 -

250747610968661 z4 + 1288 154 187383 705 z5 +

85610415996090 z6 - 58609 022 325772 z7 - 10 267480080 072 z8=
 Ç Å ¡ 12 of 50

The Problem of Constructing Gröbner Bases

Find algorithm Gb such that

"
is–finite@FD

is–finite@ Gb@FD D
is–Gröbner–basis@ Gb@FDD
ideal@FD = ideal@ Gb@FDD.

 Ç Å ¡ 13 of 50

The "Main Theorem" of Algorithmic Gröbner Bases Theory (BB 1965):

F is a Gröbner basis � "
f1,f2ÎF

 remainder[F, S–polynomial@f1, f2D] = 0.

Proof: Nontrivial. Combinatorial.

The theorem reduces an infinite check to a finite check: Recall definition of
"G is a Gröbner basis":

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 9

is–Gröbner–basis@GD � is–confluent@ ®G D.

f1f2

The power of the Gröbner bases method is contained in the invention of
the notion of S-polynomial and the proof of the above theorem.

 Ç Å ¡ 14 of 50

S-Polynomials

f1 = -2 y + x y

f2 = -x2 + y2

-2 y + x y

-x2 + y2

S–polynomial@f1, f2D = y f1 - x f2

y H-2 y + x yL - x I-x2 + y2M
S–polynomial@f1, f2D = y f1 - x f2 �� Expand

x3 - 2 y2

 Ç Å ¡ 15 of 50

An Algorithm for Constructing Gröbner Bases (BB 1965)

Recall the main theorem:

F is a Gröbner basis � "
f1,f2ÎF

 remainder[F,

S–polynomial@f1, f2D] = 0.

10 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

F is a Gröbner basis � "
f1,f2ÎF

 remainder[F,

S–polynomial@f1, f2D] = 0.

Based on the main theorem, the problem can be solved by the following
algorithm:

Start with G:= F.

For any pair of polynomials f1, f2 Î G:

 h := remainder[G, S–polynomial@f1, f2D]

 If h = 0, consider the next pair.

 If h ¹ 0, add h to G and iterate.

The algorithm allows many refinements and variants which, however, are all
based on the notion of S-polynomial and variants of the main theorem.

 Ç Å ¡ 16 of 50

Correctness and Termination of the Algorithm

Correctness: Easy as soon as main theorem is available.

Termination: by Dickson's Lemma (Dickson 1913, BB 1970).

 A sequence p1, p2, ... of power products with the property that, for all
i < j, pi does not divide p j, must be finite.

 Ç Å ¡ 17 of 50

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 11

Example

F = 9x2 y - 2 x z + 5 y - 3,

x y2 + x2 + z ,

x z - y2 + 2 x - 1=
9-3 + 5 y + x2 y - 2 x z, x2 + x y2 + z, -1 + 2 x - y2 + x z=
GroebnerBasis@FD
9146302 + 448564 z + 502763 z2 + 242180 z3 +

39771 z4 - 6231 z5 - 2448 z6 + 168 z7 + 144 z8 + 16 z9,

104376175362406 + 1599126 115499 x + 285345650 746687 z +

259094430962640 z2 + 81019429 651948 z3 - 562 741124769 z4 -

4290216888948 z5 - 216539 112 184 z6 + 199291 173968 z7 + 31 903397104 z8,

-29252096339198961 + 996255 569955877 y - 79297 437999 899296 z -

73993371970407310 z2 - 24 666 034475 337294 z3 -

250747610968661 z4 + 1288 154 187383 705 z5 +

85610415996090 z6 - 58609 022 325772 z7 - 10 267480080 072 z8=
 Ç Å ¡ 18 of 50

A Non-Trivial Algorithm: Gröb-
ner-Bases

"Lazy Thinking"

Synthesis of Gröbner-Bases
Algorithm

12 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Synthesis of Gröbner-Bases
Algorithm

 Ç Å ¡ 19 of 50

The "Lazy Thinking" Method

Is a method for the systematic invention of algorithms.

The method can be automated if suitable automated reasoners are
available.

The Theorema system (BB et al. 1996 -) is a possible frame for the automa-
tion of the method.

 Ç Å ¡ 20 of 50

Defining, Conjecturing, Proving, Programming, Computing in

Theorema

à Load Theorema

In[29]:= Needs@"Theorema`"D;
Prove::shdw : Symbol Prove appears in multiple contexts

8Theorema`Language`Semantics`UserLanguage`,

Global`<; definitions in context

Theorema`Language`Semantics`UserLanguage` may

shadow or be shadowed by other definitions. �

à Define and Conjecture

TS_In[30]:=

DefinitionB"addition", any@m, nD,
m + 0 = m " +0:"

m + n+ = Hm + nL+ " + .:"
F

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 13

TS_In[31]:=

Proposition@"left zero", any@m, nD,
0 + n = n "0+"D

à Prove

TS_In[32]:=

Prove@Proposition@"left zero"D,
using ® XDefinition@"addition"D\,
by ® NNEqIndProver,

ProverOptions ® 8TermOrder ® LeftToRight<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® 8Proved<<D;

à Automatically Generated Proof

Prove:

(Proposition (left zero): 0+) "
n

H0 + n = nL,

under the assumptions:

(Definition (addition): +0:) "
m

Hm + 0 = mL,

(Definition (addition): + .:) "
m,n

Hm + n+ = Hm + nL+L.

We prove (Proposition (left zero): 0+) by induction on n.

Induction Base:

(1) 0 + 0 = 0.

A proof by simplification of (1) works.

Simplification of the lhs term:

0 + 0 =by (Definition (addition): +0:)

0t
Simplification of the rhs term:

0t
Induction Step:

Induction Hypothesis:

(2) 0 + n1 = n1

Induction Conclusion:

(3) 0 + n1+ = n1+.

A proof by simplification of (3) works.

Simplification of the lhs term:

14 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Simplification of the lhs term:

0 + n1+ =by (Definition (addition): + .:)

H0 + n1L+ =by (2)

n1+t
Simplification of the rhs term:

n1+t
á

à Compute

TS_In[33]:=

Compute@0++ + 0+++, using ® XDefinition@"addition"D\D
TS_Out[33]= HHHH0+L+L+L+L+

 Ç Å ¡ 21 of 50

Another Example of Defining, Conjecturing, Proving, ...
TS_In[34]:=

SetOptions@Prove, transformBy ® ProofSimplifier,

TransformerOptions ® 8branches ® Proved<D;
TS_In[35]:=

DefinitionB"limit:", any@f, aD,
limit@f, aD� "

Ε
Ε>0

$
N

"
n

n³N

 f@nD - a¤ < ΕF

General::spell1 :

New symbol name "limit" is similar to existing symbol "Limit" and may be misspelled.

�

TS_In[36]:=

Proposition@"limit of sum", any@f, a, g, bD,Hlimit@f, aD ì limit@g, bDL Þ limit@f + g, a + bDD
TS_In[37]:=

Definition@"+:", any@f, g, xD,Hf + gL@xD = f@xD + g@xDD

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 15

TS_In[38]:=

Lemma@"È+È", any@x, y, a, b, ∆, ΕD,H Hx + yL - Ha + bL¤ < H∆ + ΕLL � H x - a¤ < ∆ ì y - b¤ < ΕLD
TS_In[39]:=

Lemma@"max", any@m, M1, M2D,
m ³ max@M1, M2D Þ Hm ³ M1 ì m ³ M2LD

General::spell1 :

New symbol name "max" is similar to existing symbol "Max" and may be misspelled.

�

TS_In[40]:=

TheoryB"limit",
Definition@"limit:"D
Definition@"+:"D
Lemma@"È+È"D
Lemma@"max"D

F

TS_In[41]:=

Prove@Proposition@"limit of sum"D, using ® Theory@"limit"D, by ® PCSD
TS_Out[41]=

� ProofObject �

Proof contains interesting algorithmic and didactic information!

à Automatically Generated Proof

Prove:

(Proposition (limit of sum)) "
f,a,g,b

Hlimit@f, aD ì limit@g, bD Þ limit@f + g, a + bDL,

under the assumptions:

(Definition (limit:)) "
f,a

limit@f, aD � "
Ε

Ε>0

$
N

"
n
n³N

H f@nD - a¤ < ΕL ,

(Definition (+:)) "
f,g,x

HHf + gL@xD = f@xD + g@xDL,

(Lemma (|+|)) "
x,y,a,b,∆,Ε

H x + y - Ha + bL¤ < ∆ + Ε Ü H x - a¤ < ∆ ì y - b¤ < ΕLL,

(Lemma (max)) "
m,M1,M2

Hm ³ max@M1, M2D Þ m ³ M1ì m ³ M2L.

We assume

(1) limit@f0, a0D ì limit@g0, b0D,

and show

16 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

and show

(2) limit@f0 + g0, a0 + b0D.

Formula (1.1), by (Definition (limit:)), implies:

(3) "
Ε

Ε>0

$
N

"
n
n³N

H f0@nD - a0¤ < ΕL.

By (3), we can take an appropriate Skolem function such that

(4) "
Ε

Ε>0

"
n

n³N0@ΕD
H f0@nD - a0¤ < ΕL,

Formula (1.2), by (Definition (limit:)), implies:

(5) "
Ε

Ε>0

$
N

"
n
n³N

H g0@nD - b0¤ < ΕL.

By (5), we can take an appropriate Skolem function such that

(6) "
Ε

Ε>0

"
n

n³N1@ΕD
H g0@nD - b0¤ < ΕL,

Formula (2), using (Definition (limit:)), is implied by:

(7) "
Ε

Ε>0

$
N

"
n
n³N

H Hf0 + g0L@nD - Ha0 + b0L¤ < ΕL.

We assume

(8) Ε0 > 0,

and show

(9) $
N

"
n
n³N

H Hf0 + g0L@nD - Ha0 + b0L¤ < Ε0L.

We have to find N*** such that

(10) "
n

Hn ³ N*** Þ Hf0 + g0L@nD - Ha0 + b0L¤ < Ε0L.

Formula (10), using (Definition (+:)), is implied by:

(11) "
n

Hn ³ N*** Þ f0@nD + g0@nD - Ha0 + b0L¤ < Ε0L.

Formula (11), using (Lemma (|+|)), is implied by:

(12) $
∆,Ε

∆ +Ε=Ε0

"
n

Hn ³ N*** Þ f0@nD - a0¤ < ∆ ì g0@nD - b0¤ < ΕL.

We have to find ∆*, Ε**, and N*** such that

(13) H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ f0@nD - a0¤ < ∆* ì g0@nD - b0¤ < Ε**L.

Formula (13), using (6), is implied by:

H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ Ε** > 0ì n ³ N1@Ε**D ì f0@nD - a0¤ < ∆*L,

which, using (4), is implied by:

H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ ∆* > 0ì Ε** > 0ì n ³ N0@∆*D ì n ³ N1@Ε**DL,

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 17

H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ ∆* > 0ì Ε** > 0ì n ³ N0@∆*D ì n ³ N1@Ε**DL,

which, using (Lemma (max)), is implied by:

(14) H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ ∆* > 0ì Ε** > 0ì n ³ max@N0@∆*D, N1@Ε**DDL.

Formula (14) is implied by

(15) H∆* + Ε** = Ε0L í ∆* > 0í Ε** > 0í "
n

Hn ³ N*** Þ n ³ max@N0@∆*D, N1@Ε**DDL.

Partially solving it, formula (15) is implied by

(16) H∆* + Ε** = Ε0L ì ∆* > 0ì Ε** > 0ì HN*** = max@N0@∆*D, N1@Ε**DDL.

Now,

H∆* + Ε** = Ε0L ì ∆* > 0ì Ε** > 0

can be solved for ∆* and Ε** by a call to Collins cad–method yielding a sample solution

∆* ¬
Ε0

2
,

Ε** ¬
Ε0

2
.

Furthermore, we can immediately solve

N*** = max@N0@∆*D, N1@Ε**DD
for N*** by taking

N*** ¬ maxBN0B Ε0

2
F, N1B Ε0

2
FF.

Hence formula (16) is solved, and we are done.

á

 Ç Å ¡ 22 of 50

The Algorithm Invention ("Synthesis") Problem

Given a problem specification P (in predicate logic), find an algorithm A
such that

"
x
P@x, A@xDD.

Examples of specifications P:

18 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

P@x, yD � is–sorted–version@x, yD
P@x, yD � is–integral–of@x, yD
P@x, yD � is–Gröbner–basis@x, yD
....

 Ç Å ¡ 23 of 50

Algorithm Synthesis by "Lazy Thinking" (BB 2002)

"Lazy Thinking" Method for Algorithm Synthesis =

 My Advice to "Humans" (or "Computers") How to Invent Algorithms.

Given: A problem (specification) P. Find: An algorithm A for P.

Overall Strategy of Lazy Thinking: (Automatically) reduce problem P to a
couple of (hopefully simpler) problems Q, R, ...

until ...

 Ç Å ¡ 24 of 50

 Two Key Ideas of Lazy Thinking

Given: A problem (specification) P. Find: An algorithm A for P.

§ (Understand the problem "completely": Specification P must be
spelled out and "complete" knowledge must be available on the
notions that occur in the specification P.)

§ Consider known fundamental ideas of how to structure algorithms
in terms of subalgorithms ("algorithm schemes A").

Try one scheme A after the other.

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 19

§

Consider known fundamental ideas of how to structure algorithms
in terms of subalgorithms ("algorithm schemes A").

Try one scheme A after the other.

§ For the chosen scheme A, try to prove "
x

P[x, A[x]]: From the

failing proof construct specifications for the subalgorithms B occur-
ring in A.

Example of an Algorithm Scheme ("Divide and Conquer"):

"
x

A@xD = : S@xD Ü is–trivial–tuple@xD
M@A@L@xDD, A@R@xDDD Ü otherwise

A is unknown algorithm.

S, M, L, R are unknown subalgorithms.

 Ç Å ¡ 25 of 50

Literature

There is a rich literature on algorithm synthesis methods, see survey

[Basin et al. 2004] D. Basin, Y. Deville, P. Flener, A. Hamfelt, J. F. Nilsson.
Synthesis of Programs in Computational Logic. In: M. Bruynooghe, K. K.
Lau (eds.), Program Development in Computational Logic, Lecture Notes in
Computer Science, Vol. 3049, Springer, 2004, pp. 30-65.

My method is in the class of "scheme-based" methods. Closest (but essen-
tially different):

[Lau et al. 1999] K. K. Lau, M. Ornaghi, S. Tärnlund. Steadfast logic
programs. Journal of Logic Programming, 38/3, 1999, pp. 259-294.

And the work of A. Bundy and his group (U of Edinburgh) on the auto-
mated invention of induction schemes.

 Ç Å ¡ 26 of 50

20 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize algorithm "sorted" such that

"
x
is–sorted–version@x, sorted@xDD.

("Correctness Theorem")

Knowledge on the Problem:

"
x,y

Kis–sorted–version@x, yD �
is–sorted@yD
is–permuted–version@x, yDO

is–sorted@X\D
"
x
is–sorted@Xx\D

"
x,y,z

is–sorted@Xx, y, z\D �
x ³ y

is–sorted@Xy, z\D
etc. (approx. 20 formulae, see notebook of proofs in the Appendix.)

 Ç Å ¡ 27 of 50

An Algorithm Scheme: Divide and Conquer

"
x

A@xD = : S@xD Ü is–trivial–tuple@xD
M@A@L@xDD, A@R@xDDD Ü otherwise

sorted is unknown algorithm.

S, M, L, R are unknown subalgorithms.

The only thing known is how the unknown algorithm sorted is composed
from the unknown algorithms S, M, L, R.

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 21

We now start an (automated) induction prover for proving the correctness
theorem and analyze the failing proof: see notebooks with failing proofs.

 Ç Å ¡ 28 of 50

Automated Invention of Sufficient Specifications for the

Subalgorithms

A simple (but amazingly powerful) rule (m ... an unknown subalgorithm):

Collect temporary assumptions T[x0, ... A [...], ...]

and temporary goals G[x0, ...m [A [...]]]

and produces specification

"
X, ..., Y, ...

ITAX, ...Y, ...E � GAX, ... m AYE E M.
Details: see papers [Buchberger 2003] and example (in appendix).

 Ç Å ¡ 29 of 50

The Result of Applying Lazy Thinking in the Sorting Example

Lazy Thinking, automatically (in approx. 1 minute on a laptop using the Theo-

rema system), finds the following specifications for the sub-algorithms that
provenly guarantee the correctness of the above algorithm (scheme):

"
x

His–trivial–tuple@xD Þ S@xD = xL

"
y,z

is–sorted@yD
is–sorted@zD Þ

is–sorted@M@y, zDD
M@y, zD » Hy ^ zL

"
x

HL@xD ^ R@xD » xL
Note: the specifications generated are not only sufficient but natural !

22 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

What do we have now: A problem reduction !

 Ç Å ¡ 30 of XXX

Example: Synthesis of Insertion-Sort

Synthesize A such that

"
x
is–sorted–version@x, A@xDD.

Algorithm Scheme: "simple recursion"

A@X\D = c

"
x
A@Xx\D = s@Xx\D

"
x,y

HA@Xx, y\D = i@x, A@Xy\DDL
Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the
Theorema system), finds the following specifications for the auxiliary
functions

c = X\
"
x

Hs@Xx\D = Xx\L
"
x,y

is–sorted@Xy\D Þ
is–sorted@i@x, Xy\DD
i@Xx, y\D » Hx \ Xy\L

 Ç Å ¡ 31 of 50

A Non-Trivial Algorithm: Gröb-
ner-Bases

"Lazy Thinking"

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 23

"Lazy Thinking"

Synthesis of Gröbner-Bases
Algorithm

 Ç Å ¡ 32 of 50

How Far Can We Go With the "Lazy Thinking" Method ?

Can we automatically synthesize algorithms for non-trivial problems? What
is "non-trivial"?

Example of a non-trivial problem (?): construction of Gröbner bases.

"Non-trivial" part of the invention: The invention of the notion of S-polyno-
mial and the characterization of Gröbner-bases by finitely many S-polyno-
mial checks.

With the "Lazy Thinking" method, it is possible to invent the essential idea of
Buchberger's Gröbner bases algorithm (1965) fully automatically: See
[Buchberger 2005, Craciun 2008].

 Ç Å ¡ 33 of 50

The Problem of Constructing Gröbner Bases

Find algorithm Gb such that

24 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

"
is–finite@FD

is–finite@ Gb@FD D
is–Gröbner–basis@ Gb@FDD
ideal@FD = ideal@ Gb@FDD.

is–Gröbner–basis@GD � is–confluent@ ®G D.
 ®G ... a division step.

 Ç Å ¡ 34 of XXX

Confluence of Division ®G

is–confluent@ ® D : � "
f1,f2

Hf1 «* f2 Þ f1¯*f2L

f1f2

 Ç Å ¡ 35 of 50

Knowledge on the Concepts Involved

h1 ®G h2 Þ p . h1 ®G p . h2

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 25

etc.

 Ç Å ¡ 36 of 50

Algorithm Scheme "Critical Pair / Completion"

A@FD = A@F, pairs@FDD
A@F, X\D = F

A@F, XXg1, g2\, p\D =

whereBf = lc@g1, g2D, h1 = trd@rd@f, g1D, FD, h2 = trd@rd@f, g2D, FD,
A@F, Xp\D Ü h1 = h2

ABF [df@h1, h2D, Xp\ ^ [XFk, df@h1, h2D\
k=1,…, F¤_F Ü otherwise F

This scheme can be tried in any domain, in which we have a reduction opera-
tion rd that depends on sets F of objects and a Noetherian relation � which
interacts with rd in the following natural way:

"
f,g

Hf � rd@f, gDL.
 Ç Å ¡ 37 of 50

The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also
stated by asking whether starting with the proof of

"
F

is–finite@ A@FD D
is–Gröbner–basis@ A@FDD
ideal@FD = ideal@ A@FDD.

using the above scheme for A we can automatically produce the idea that

lc@g1, g2D = lcm@lp@g1D, lp@g2DD
and

26 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

and

df@h1, h2D = h1 -h2

and prove that the idea is correct.

 Ç Å ¡ 38 of 50

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system (and
other provers), the proof attempt can be done automatically.

(PhD thesis 2008 by my student A. Craciun.)

 Ç Å ¡ 39 of 50

Details

It should be clear that, if the algorithm terminates, the final result is a finite
set (of polynomials) G that has the property

"
g1,g2ÎG

KwhereBf = lc@g1, g2D, h1 = trd@rd@f, g1D, FD,
h2 = trd@rd@f, g2D, FD, ë ; h1 = h2

df@h1, h2D Î G
FO.

We now try to prove that, if G has this property, then

is–finite@GD,
ideal@FD = ideal@GD,
is–Gröbner–basis@GD,

i.e. is–Church–Rosser@ ®G D.
Here, we only deal with the third, most important, property.

 Ç Å ¡ 40 of 50

Using Available Knowledge

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 27

Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown
that it is sufficient to prove

is–Church–Rosser@ ®G D � "
p

"
f1,f2

KK; p ® f1

p ® f2
O Þ f1¯*f2O.

Newman's lemma (1942):

is–Church–Rosser@ ® D � "
f,f1,f2

KK; f ® f1

f ® f2
O Þ f1¯*f2O.

Definition of "f1 and f2 have a common successor":

f1¯*f2 � $
g

f1 ®* g

f2 ®* g

 Ç Å ¡ 41 of 50

The (Automated) Proof Attempt

Let now the power product p and the polynomials f1, f2 be arbitary but fixed
and assume

; p ®G f1

p ®G f2.

We have to find a polyonomial g such that

f1 ®G
* g,

f2 ®G
* g.

From the assumption we know that there exist polynomials g1 and g2 in G
such that

lp@g1D p,

f1 = rd@p, g1D,
lp@g2D p,

f2 = rd@p, g2D.
From the final situation in the algorithm scheme we know that for these g1
and g2

28 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

ë ; h1 = h2

df@h1, h2D Î G,

where

h1 := trd@f1', GD, f1' := rd@lc@g1, g2D, g1D,
h2 := trd@f2', GD, f2' := rd@lc@g1, g2D, g2D.

 Ç Å ¡ 42 of 50

Case h1=h2

lc@g1, g2D ®g1 rd@lc@g1, g2D, g1D ®G
* trd@rd@lc@g1, g2D, g1D, GD =

trd@rd@lc@g1, g2D, g2D, GD ¬G
* rd@lc@g1, g2D, g2D ¬g2 lc@g1, g2D.

(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and
rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

"
a,q

H a q lc@g1, g2D ®g1

a q rd@lc@g1, g2D, g1D ®G
* a q trd@rd@lc@g1, g2D, g1D, GD =

a q trd@rd@lc@g1, g2D, g2D, GD ¬G
* a q rd@lc@g1, g2D, g2D ¬g2

a q lc@g1, g2D L.
Now we are stuck in the proof.

 Ç Å ¡ 43 of 50

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could pro-
ceed successfully with the proof if lc[g1,g2] satisfied the following
requirement

"
p,g1,g2

lp@g1D p

lp@g2D p
Þ $

a,q
Hp = a q lc@g1, g2D L , Hlc requirementL

With such an lc, we then would have

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 29

p ®g1 rd@p, g1D =

a q rd@lc@g1, g2D, g1D ®G
* a q trd@rd@lc@g1, g2D, g1D, GD =

a q trd@rd@lc@g1, g2D, g2D, GD ¬G
* a q rd@lc@g1, g2D, g2D =

rd@p, g2D ¬g2 p

and, hence,

f1 ®G
* a q trd@rd@lc@g1, g2D, g1D, GD,

f2 ®G
* a q trd@rd@lc@g1, g2D, g1D, GD,

i.e. we would have found a suitable g.

 Ç Å ¡ 44 of 50

Summarize the (Automatically Generated) Specifications of the

Subalgorithm lc

Using the above specification generation rule, we see that we could pro-
ceed successfully with the proof if lc[g1,g2] satisfied the following
requirement

"
p,g1,g2

lp@g1D p

lp@g2D p
Þ Hlc@g1, g2D pL ,

and the requirements:

lp@g1D lc@g1, g2D,
lp@g2D lc@g1, g2D.

Now this problem can be attacked independently of any Gröbner bases the-
ory, ideal theory etc.

 Ç Å ¡ 45 of 50

30 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

A Suitable lc

lcp@g1, g2D = lcm@lp@g1D, lp@g2DD
is a suitable function that satisfies the above requirements.

Eureka! The crucial function lc (the "critical pair" function) in the critical pair /
completion algorithm scheme has been synthesized automatically!

 Ç Å ¡ 46 of 50

Case h1¹h2

In this case, df[h1,h2]ÎG:

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the
following requirement

"
h1,h2

Hh1 ¯8df@h1,h2D<*h2L Hdf requirementL.
 Ç Å ¡ 47 of 50

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial
reduction, it is now easy to find a function df that satifies (df requirement),
namely

df@h1, h2D = h1 - h2,

because, in fact,

"
f,g

Hf ¯8f-g<*gL.
Eureka! The function df (the "completion" function) in the critical pair / com-
pletion algorithm scheme has been "automatically" synthesized!)

 Ç Å ¡ 48 of 50

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 31

 Ç Å ¡ 48 of 50

Conclusion

Automation of mathematical reasoning
("formal methods") is in the center of the
technology spiral:

32 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Reasoning Mathematics / Software Economy Welfare Science & Technology
 Ç Å ¡ 49 of 50

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 33

References

à On my "Thinking, Speaking, Writing" Course

B. Buchberger.

Thinking, Speaking, Writing: A Course on Using Predicate Logic as a Work-
ing Language.

Lecture Notes, RISC (Research Institute for Symbolic Computation),
Johannes Kepler University, Linz, Austria, 1982 - 2007.

à On my "White Box / Black Box Principle" for the Didactics of Using Math Software

Systems for Math Teaching

B. Buchberger

Should Students Learn Integration Rules?

ACM SIGSAM Bulletin Vol.24/1, January 1990, pp. 10-17.

à On Gröbner Bases

[Buchberger 1970]

B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines alge-
braischen Gleichungssystems (An Algorithmical Criterion for the Solvability
of Algebraic Systems of Equations). Aequationes mathematicae 4/3, 1970,
pp. 374-383. (English translation in: [Buchberger, Winkler 1998], pp. 535
-545.) Published version of the PhD Thesis of B. Buchberger, University of
Innsbruck, Austria, 1965.

[Buchberger 1998]

B. Buchberger. Introduction to Gröbner Bases. In: [Buchberger, Winkler
1998], pp.3-31.

[Buchberger, Winkler, 1998]

B. Buchberger, F. Winkler (eds.). Gröbner Bases and Applications, Proceed-
ings of the International Conference "33 Years of Gröbner Bases", 1998,
RISC, Austria, London Mathematical Society Lecture Note Series, Vol. 251,
Cambridge University Press, 1998.

34 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

[Buchberger, Winkler, 1998]

B. Buchberger, F. Winkler (eds.). Gröbner Bases and Applications, Proceed-
ings of the International Conference "33 Years of Gröbner Bases", 1998,
RISC, Austria, London Mathematical Society Lecture Note Series, Vol. 251,
Cambridge University Press, 1998.

[Becker, Weispfenning 1993]

T. Becker, V. Weispfenning. Gröbner Bases: A Computational Approach to
Commutative Algebra, Springer, New York, 1993.

à On Mathematical Knowledge Management

B. Buchberger, G. Gonnet, M. Hazewinkel (eds.)

Mathematical Knowledge Management.

Special Issue of Annals of Mathematics and Artificial Intelligence, Vol. 38,
No. 1-3, May 2003, Kluwer Academic Publisher, 232 pages.

A.Asperti, B. Buchberger, J.H.Davenport (eds.)

Mathematical Knowledge Management.

Proceedings of the Second International Conference on Mathematical Knowl-
edge Management (MKM 2003), Bertinoro, Italy, Feb.16-18, 2003, Lecture
Notes in Computer Science, Vol. 2594, Springer, Berlin-Heidelberg-
NewYork, 2003, 223 pages.

A.Asperti, G.Bancerek, A.Trybulec (eds.).

Proceedings of the Third International Conference on Mathematical Knowl-
edge Management, MKM 2004,

Bialowieza, Poland, September 19-21, 2004, Lecture Notes in Computer
Science, Vol. 3119, Springer, Berlin-Heidelberg-NewYork, 2004

à On Theorema

[Buchberger et al. 2000]

B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,
W. Windsteiger. The Theorema Project: A Progress Report. In: M. Kerber
and M. Kohlhase (eds.), Symbolic Computation and Automated Reasoning
(Proceedings of CALCULEMUS 2000, Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning, August 6-7, 2000, St.
Andrews, Scotland), A.K. Peters, Natick, Massachusetts, ISBN
1-56881-145-4, pp. 98-113.

à On Theory Exploration and Algorithm Synthesis

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 35

à

On Theory Exploration and Algorithm Synthesis

[Buchberger 2000]

B. Buchberger. Theory Exploration with Theorema.

Analele Universitatii Din Timisoara, Ser. Matematica-Informatica, Vol.
XXXVIII, Fasc.2, 2000, (Proceedings of SYNASC 2000, 2nd International
Workshop on Symbolic and Numeric Algorithms in Scientific Computing,
Oct. 4-6, 2000, Timisoara, Rumania, T. Jebelean, V. Negru, A. Popovici
eds.), ISSN 1124-970X, pp. 9-32.

[Buchberger 2003]

B. Buchberger. Algorithm Invention and Verification by Lazy Thinking.

In: D. Petcu, V. Negru, D. Zaharie, T. Jebelean (eds), Proceedings of
SYNASC 2003 (Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, October 1–4, 2003), Mirton Publishing, ISBN
973–661–104–3, pp. 2–26.

[Buchberger, Craciun 2003]

B. Buchberger, A. Craciun. Algorithm Synthesis by Lazy Thinking: Examples
and Implementation in Theorema. in: Fairouz Kamareddine (ed.), Proc. of
the Mathematical Knowledge Management Workshop, Edinburgh, Nov. 25,
2003, Electronic Notes on Theoretical Computer Science, volume dedi-
cated to the MKM 03 Symposium, Elsevier, ISBN 044451290X, to appear.

[Buchberger 2005]

B. Buchberger.

Towards the Automated Synthesis of a Gröbner Bases Algorithm.

RACSAM (Review of the Royal Spanish Academy of Science), Vol. 98/1,
2005, pp. 65-75.

[Craciun 2008]

A. Craciun.

The Implementation of Buchberger's Lazy Thinking Method for Automated
Algorithm Synthesis in Theorema.

PhD Thesis, Research Institute for Symbolic Computation, Johannes Kepler
University, Linz, Austria, April 2008.

36 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

[Craciun 2008]

A. Craciun.

The Implementation of Buchberger's Lazy Thinking Method for Automated
Algorithm Synthesis in Theorema.

PhD Thesis, Research Institute for Symbolic Computation, Johannes Kepler
University, Linz, Austria, April 2008.

 Ç Å ¡ 50 of 50

Appendix: The Proofs Generated During the
Automated Synthesis of the Merge-Sort Algorithm

à First Proof Attempt

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 37

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x1D IXX0\ � x1 Þ is–sorted–version@x1, sorted@x1DDM

38 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

(2) "
is–tuple@x1D IXX0\ � x1 Þ is–sorted–version@x1, sorted@x1DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula (1), by HLemma HClosure of SpecialLL, implies:

(12)is–tupleAspecialAXX0\EE.

By (1),Formula (5), using (Definition (is sorted version)), is implied by:

(13)is–tupleAspecialAXX0\EE ì specialAXX0\E » XX0\ ì is–sortedAspecialAXX0\EE.

Not all the conjunctive parts of (13)can be proved.

Proof of (13.1) is–tupleAspecialAXX0\EE:

Formula (13.1) is true because it is identical to (12).

Proof of (13.2) specialAXX0\E » XX0\:

Formula (13.3), using (10), is implied by:

(14)specialAXX0\E = XX0\.

The proof of (14)fails. (The prover "QR" was unable to transform the proof situation.)

Proof of (13.4) is–sortedAspecialAXX0\EE:

Pending proof of (13.4).

Case 2:

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

Pending proof of (8).

á

à Second Proof Attempt (with Specifications of Subalgorithms Extractd from First Proof

Attempt)

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 39

à

Second Proof Attempt (with Specifications of Subalgorithms Extractd from First Proof

Attempt)

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

40 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D Þ Hspecial@X1D = X1LL.

We try to prove (Theorem (correctness of sort)) by applying several proof methods for sequences.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x2D IXX0\ � x2 Þ is–sorted–version@x2, sorted@x2DDM

We have to show:

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 41

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E ì XX0\ » XX0\ ì is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ » XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2:

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1),
(Lemma (splits are shorter): 1) and (Lemma (splits are shorter): 2), we obtain:

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

42 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Not all the conjunctive parts of (41)can be proved.

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1), by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.3) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\:

The proof of (41.3)fails. (The prover "QR" was unable to transform the proof situation.)

Proof of (41.4)
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

Pending proof of (41.4).

á

à Third Proof Attempt (with Specifications of Subalgorithms Extractd from Second Proof

Attempt)

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 43

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

44 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D ì is–sorted@X1D Þ Hspecial@X1D = X1LL,

(Lemma (conjecture44): conjecture44)

"
X2,X3,X4

is–tuple@X4D
His–tuple@X2D ì left–split@X4D » X2ì

is–sorted@X2D ì is–tuple@X3D ì right–split@X4D » X3ì
is–sorted@X3D ì Ø is–trivial–tuple@X4D Þ merged@X2, X3D » X4L

.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x3D IXX0\ � x3 Þ is–sorted–version@x3, sorted@x3DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1:

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 45

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E ì XX0\ » XX0\ ì is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ » XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2:

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1),
(Lemma (splits are shorter): 1) and (Lemma (splits are shorter): 2), we obtain:

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

46 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Not all the conjunctive parts of (41)can be proved.

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1), by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.2) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\:

Formula (41.2), using (Lemma (conjecture44): conjecture44), is implied by:

(44)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE ì Ø is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (44):

Proof of (44.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (44.1) is true because it is identical to (25.1).

Proof of (44.2) left–splitAXX0\E » sortedAleft–splitAXX0\EE:

Formula (44.2) is true because it is identical to (25.1).

Proof of (44.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (44.3) is true because it is identical to (25.3).

Proof of (44.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (44.4) is true because it is identical to (26.1).

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 47

Formula (44.4) is true because it is identical to (26.1).

Proof of (44.5) right–splitAXX0\E » sortedAright–splitAXX0\EE:

Formula (44.5) is true because it is identical to (26.2).

Proof of (44.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (44.6) is true because it is identical to (26.2).

Proof of (44.7) Ø is–trivial–tupleAXX0\E:

Formula (44.7) is true because it is identical to (6).

Proof of (41.3)
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

The proof of (41.3) fails. (The prover "QR" was unable to transform the proof situation.)

á

à Successful Proof (with Specifications of Subalgorithms Extractd from Third Proof

Attempt)

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

48 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D ì is–sorted@X1D Þ Hspecial@X1D = X1LL,

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 49

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D ì is–sorted@X1D Þ Hspecial@X1D = X1LL,

(Lemma (conjecture44): conjecture44)

"
X2,X3,X4

is–tuple@X4D
His–tuple@X2D ì left–split@X4D » X2ì

is–sorted@X2D ì is–tuple@X3D ì right–split@X4D » X3ì
is–sorted@X3D ì Ø is–trivial–tuple@X4D Þ merged@X2, X3D » X4L

,

(Lemma (conjecture46): conjecture46)

"
X5,X6,X7

is–tuple@X7D
His–tuple@X5D ì left–split@X7D » X5 ì

is–sorted@X5D ì is–tuple@X6D ì right–split@X7D » X6 ì
is–sorted@X6D ì Ø is–trivial–tuple@X7D Þ is–sorted@merged@X5, X6DDL

.

We prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x4D IXX0\ � x4 Þ is–sorted–version@x4, sorted@x4DDM

We have to show:

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We prove (3) by case distinction using (Algorithm (sorted)).

Case 1:

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula (1) and (4), by (Lemma (closure of special)), implies:

50 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Formula (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E ì XX0\ » XX0\ ì is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ » XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2:

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1),
(Lemma (splits are shorter): 1) and (Lemma (splits are shorter): 2), we obtain:

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 51

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

We prove the individual conjunctive parts of (41):

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1), by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.2) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\:

Formula (41.2), using (Lemma (conjecture44): conjecture44), is implied by:

(44)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE ì Ø is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (44):

Proof of (44.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (44.1) is true because it is identical to (25.1).

Proof of (44.2) left–splitAXX0\E » sortedAleft–splitAXX0\EE:

Formula (44.2) is true because it is identical to (25.1).

Proof of (44.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (44.3) is true because it is identical to (25.3).

Proof of (44.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (44.4) is true because it is identical to (26.1).

Proof of (44.5) right–splitAXX0\E » sortedAright–splitAXX0\EE:

Formula (44.5) is true because it is identical to (26.2).

Proof of (44.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (44.6) is true because it is identical to (26.2).

Proof of (44.7) Ø is–trivial–tupleAXX0\E:

Formula (44.7) is true because it is identical to (6).

Proof of (41.3)
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

52 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb

Proof of (41.3)
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

Formula (41.3), using (Lemma (conjecture46): conjecture46), is implied by:

(52)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE ì Ø is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (52):

Proof of (52.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (52.1) is true because it is identical to (25.1).

Proof of (52.2) left–splitAXX0\E » sortedAleft–splitAXX0\EE:

Formula (52.2) is true because it is identical to (25..2).

Proof of (52.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (52.3) is true because it is identical to (25.3).

Proof of (52.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (52.4) is true because it is identical to (26.1).

Proof of (52.5) right–splitAXX0\E » sortedAright–splitAXX0\EE:

Formula (52.5) is true because it is identical to (26.2).

Proof of (52.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (52.6) is true because it is identical to (26.3).

Proof of (52.7) Ø is–trivial–tupleAXX0\E:

Formula (52.7) is true because it is identical to (6).

á

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 53

