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What Are Groebner Bases?
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What Are Groebner Bases?

F = 9x2 y - 2 x z + 5 y - 3,

x y2 + x2 + z ,

x z - y2 + 2 x - 1=
9-3 + 5 y + x2 y - 2 x z, x2 + x y2 + z, -1 + 2 x - y2 + x z=
GroebnerBasis@FD
9146302 + 448564 z + 502763 z2 + 242 180 z3 + 39771 z4 -

6231 z5 - 2448 z6 + 168 z7 + 144 z8 + 16 z9, 104 376 175362 406 +

1599126115499 x + 285345650 746 687 z + 259 094 430 962 640 z2 +

81019429651948 z3 - 562 741 124 769 z4 - 4290 216 888 948 z5 -

216539112184 z6 + 199291173 968 z7 + 31903 397 104 z8,

-29252096339198961 + 996255 569955 877 y - 79 297437 999 899 296 z -

73993371970407310 z2 - 24 666 034 475 337 294 z3 -

250747610968661 z4 + 1288 154 187 383 705 z5 +

85610415996090 z6 - 58609 022 325 772 z7 - 10 267 480 080 072 z8=
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Application Example:  "Algebraic Biology" 2007, RISC, S. Petrovic et 

al.

Gegeben:

Gesucht:
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x, y, z, ...:  Probabilities at the nodes of the "similarity tree".
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Application Example:  Software Reverse Engineering,  2007, RISC, T. 

Jebelean, D. Kapur, ...

Given:  Programm.

Find:   Specification.

Given:  Program, specification.

Find:   Loop invariants for the formal verification.

x, y, z, ...:  the values of the program variables.
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Application Example: 

Break Cryptographic Codes, 

2003, Paris VI, J.C. Faugere et al.

Given:  Input - Output test examples

Find:   the key,  e.g.    011000101011011....11011101.

x, y, z, ...:  the bits in the key.
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x, y, z, ...:  the bits in the key.
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Application Example: "Algebraic Oil", 

Shell 2005,  RISC 2009

Given:  Observations about oil flow in dependence on the position of the 
valves.

Find:   The coefficients of a polynomials systems, that describes the 
behavior.

x, y, z, ...:  the position of the valves.
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Relevance of Groebner Bases
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Relevance of Groebner Bases

ç Dozens of (difficult) problems on non-linear systems can be reduced 
to the construction of Groebner bases 

 (~ 1000 papers, ~ 30 books,  own AMS Classification number: 
13P10).

ç Some of these problems were open for many decades.

ç Solution of these problems is possible for Groebner bases, because 
Groebner bases have some nice properties  (canonicality, elimina-
tion, syzygy property).

ç Therefore the construction of Groebner bases is an important 
problem.

  Ç Å ¡ 9 of 50

Definition of Gröbner Bases  (BB 1965)

is–Gröbner–basis@GD � is–confluent@ ®G D.
 ®G  ...  a division step.

  Ç Å ¡ 10 of XXX
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Confluence of Division ®G

is–confluent@ ® D : � "
f1,f2

Hf1 «* f2 Þ f1¯*f2L

f1f2

  Ç Å ¡ 11 of XXX

Example of a Property of Gröbner Bases: Elimination Property

A Gröbner bases G (w.r.t. a lexicographic ordering) is "triangularized" (see 
the example at the beginning)!

This allows to obtain all the solutions of G by successive elimination.

F = 9x2 y - 2 x z + 5 y - 3,

x y2 + x2 + z ,

x z - y2 + 2 x - 1=
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GroebnerBasis@FD
9146302 + 448564 z + 502763 z2 + 242180 z3 +

39771 z4 - 6231 z5 - 2448 z6 + 168 z7 + 144 z8 + 16 z9,

104376175362406 + 1599126 115499 x + 285345650 746687 z +

259094430962640 z2 + 81019429 651948 z3 - 562 741124769 z4 -

4290216888948 z5 - 216539 112 184 z6 + 199291 173968 z7 + 31 903397104 z8,

-29252096339198961 + 996255 569955877 y - 79297 437999 899296 z -

73993371970407310 z2 - 24 666 034475 337294 z3 -

250747610968661 z4 + 1288 154 187383 705 z5 +

85610415996090 z6 - 58609 022 325772 z7 - 10 267480080 072 z8=
  Ç Å ¡ 12 of 50

The Problem of Constructing Gröbner Bases

 

Find algorithm Gb such that

"
is–finite@FD

is–finite@ Gb@FD D
is–Gröbner–basis@ Gb@FDD
ideal@FD = ideal@ Gb@FDD.

  Ç Å ¡ 13 of 50

The "Main Theorem" of Algorithmic Gröbner Bases Theory (BB 1965):

F is a Gröbner basis  �   "
f1,f2ÎF

   remainder[ F, S–polynomial@f1, f2D] = 0.

Proof: Nontrivial. Combinatorial. 

The theorem reduces an infinite check to a finite check:  Recall definition of 
"G is a Gröbner basis":
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is–Gröbner–basis@GD � is–confluent@ ®G D.

f1f2

The power of the Gröbner bases method is contained in the invention of 
the notion of S-polynomial and the proof of the above theorem.

  Ç Å ¡ 14 of 50

S-Polynomials

f1 = -2 y + x y

f2 = -x2 + y2

-2 y + x y

-x2 + y2

S–polynomial@f1, f2D = y f1 - x f2

y H-2 y + x yL - x I-x2 + y2M
S–polynomial@f1, f2D = y f1 - x f2 �� Expand

x3 - 2 y2
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An Algorithm for Constructing Gröbner Bases (BB 1965)

Recall the main theorem:

F is a Gröbner basis   �    "
f1,f2ÎF

  remainder[ F, 

S–polynomial@f1, f2D] = 0.

10 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb



F is a Gröbner basis   �    "
f1,f2ÎF

  remainder[ F, 

S–polynomial@f1, f2D] = 0.

Based on the main theorem, the problem can be solved by the following 
algorithm:

Start with G:= F. 

For any pair of polynomials f1, f2 Î G:

      h := remainder[ G, S–polynomial@f1, f2D] 
      

      If h = 0, consider the next pair.

      

      If h ¹ 0, add h to G and iterate.          

The algorithm allows many refinements and variants which, however, are all 
based on the notion of S-polynomial and variants of the main theorem.

  Ç Å ¡ 16 of 50

Correctness and Termination of the Algorithm

Correctness: Easy as soon as main theorem is available.

Termination: by Dickson's Lemma (Dickson 1913, BB 1970).

       A sequence  p1, p2, ...  of power products with the property that, for all 
i < j, pi does not divide p j, must be finite.

  Ç Å ¡ 17 of 50
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Example

F = 9x2 y - 2 x z + 5 y - 3,

x y2 + x2 + z ,

x z - y2 + 2 x - 1=
9-3 + 5 y + x2 y - 2 x z, x2 + x y2 + z, -1 + 2 x - y2 + x z=
GroebnerBasis@FD
9146302 + 448564 z + 502763 z2 + 242180 z3 +

39771 z4 - 6231 z5 - 2448 z6 + 168 z7 + 144 z8 + 16 z9,

104376175362406 + 1599126 115499 x + 285345650 746687 z +

259094430962640 z2 + 81019429 651948 z3 - 562 741124769 z4 -

4290216888948 z5 - 216539 112 184 z6 + 199291 173968 z7 + 31 903397104 z8,

-29252096339198961 + 996255 569955877 y - 79297 437999 899296 z -

73993371970407310 z2 - 24 666 034475 337294 z3 -

250747610968661 z4 + 1288 154 187383 705 z5 +

85610415996090 z6 - 58609 022 325772 z7 - 10 267480080 072 z8=
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A Non-Trivial Algorithm: Gröb-
ner-Bases

"Lazy Thinking" 

Synthesis of Gröbner-Bases 
Algorithm
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Synthesis of Gröbner-Bases 
Algorithm
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The "Lazy Thinking" Method

Is a method for the systematic invention of algorithms.

The method can be automated if suitable automated reasoners are 
available.

The Theorema system (BB et al. 1996 -  ) is a possible frame for the automa-
tion of the method.

  Ç Å ¡ 20 of 50

Defining, Conjecturing, Proving, Programming, Computing  in 

Theorema

à Load Theorema

In[29]:= Needs@"Theorema`"D;
Prove::shdw : Symbol Prove appears in multiple contexts

8Theorema`Language`Semantics`UserLanguage`,

Global`<; definitions in context

Theorema`Language`Semantics`UserLanguage` may

shadow or be shadowed by other definitions. �

à Define and Conjecture

TS_In[30]:=

DefinitionB"addition", any@m, nD,
m + 0 = m " +0:"

m + n+ = Hm + nL+ " + .:"
F
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TS_In[31]:=

Proposition@"left zero", any@m, nD,
0 + n = n "0+"D

à Prove

TS_In[32]:=

Prove@Proposition@"left zero"D,
using ® XDefinition@"addition"D\,
by ® NNEqIndProver,

ProverOptions ® 8TermOrder ® LeftToRight<,
transformBy ® ProofSimplifier, TransformerOptions ® 8branches ® 8Proved<<D;

à Automatically Generated Proof

Prove:

(Proposition (left zero): 0+) "
n

H0 + n = nL,

under the assumptions:

(Definition (addition):  +0:) "
m

Hm + 0 = mL,

(Definition (addition):  + .:) "
m,n

Hm + n+ = Hm + nL+L.

We prove (Proposition (left zero): 0+) by induction on n.

Induction Base: 

(1) 0 + 0 = 0.

A proof by simplification of (1) works.

Simplification of the lhs term:

0 + 0 =by (Definition (addition):  +0:)

0t
Simplification of the rhs term:

0t
Induction Step:

Induction Hypothesis:

(2) 0 + n1 = n1

Induction Conclusion:

(3) 0 + n1+ = n1+.

A proof by simplification of (3) works.

Simplification of the lhs term:

14 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb



Simplification of the lhs term:

0 + n1+ =by (Definition (addition):  + .:)

H0 + n1L+ =by (2)

n1+t
Simplification of the rhs term:

n1+t
á

à Compute

TS_In[33]:=

Compute@0++ + 0+++, using ® XDefinition@"addition"D\D
TS_Out[33]= HHHH0+L+L+L+L+
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Another Example of Defining, Conjecturing, Proving, ...
TS_In[34]:=

SetOptions@Prove, transformBy ® ProofSimplifier,

TransformerOptions ® 8branches ® Proved<D;
TS_In[35]:=

DefinitionB"limit:", any@f, aD,
limit@f, aD� "

Ε
Ε>0

$
N

"
n

n³N

 f@nD - a¤ < ΕF

General::spell1 :

New symbol name "limit" is similar to existing symbol "Limit" and may be misspelled.

�

TS_In[36]:=

Proposition@"limit of sum", any@f, a, g, bD,Hlimit@f, aD ì limit@g, bDL Þ limit@f + g, a + bDD
TS_In[37]:=

Definition@"+:", any@f, g, xD,Hf + gL@xD = f@xD + g@xDD
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TS_In[38]:=

Lemma@"È+È", any@x, y, a, b, ∆, ΕD,H Hx + yL - Ha + bL¤ < H∆ + ΕLL � H x - a¤ < ∆ ì  y - b¤ < ΕLD
TS_In[39]:=

Lemma@"max", any@m, M1, M2D,
m ³ max@M1, M2D Þ Hm ³ M1 ì m ³ M2LD

General::spell1 :

New symbol name "max" is similar to existing symbol "Max" and may be misspelled.

�

TS_In[40]:=

TheoryB"limit",
Definition@"limit:"D
Definition@"+:"D
Lemma@"È+È"D
Lemma@"max"D

F

TS_In[41]:=

Prove@Proposition@"limit of sum"D, using ® Theory@"limit"D, by ® PCSD
TS_Out[41]=

� ProofObject �

Proof contains interesting algorithmic and didactic information!

à Automatically Generated Proof

Prove:

(Proposition (limit of sum)) "
f,a,g,b

Hlimit@f, aD ì limit@g, bD Þ limit@f + g, a + bDL,

under the assumptions:

(Definition (limit:)) "
f,a

limit@f, aD � "
Ε

Ε>0

$
N

"
n
n³N

H f@nD - a¤ < ΕL ,

(Definition (+:)) "
f,g,x

HHf + gL@xD = f@xD + g@xDL,

(Lemma (|+|)) "
x,y,a,b,∆,Ε

H x + y - Ha + bL¤ < ∆ + Ε Ü H x - a¤ < ∆ ì  y - b¤ < ΕLL,

(Lemma (max)) "
m,M1,M2

Hm ³ max@M1, M2D Þ m ³ M1ì m ³ M2L.

We assume

(1) limit@f0, a0D ì limit@g0, b0D,

and show

16 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb



and show

(2) limit@f0 + g0, a0 + b0D.

Formula (1.1), by (Definition (limit:)), implies:

(3) "
Ε

Ε>0

$
N

"
n
n³N

H f0@nD - a0¤ < ΕL.

By (3), we can take an appropriate Skolem function such that

(4) "
Ε

Ε>0

"
n

n³N0@ΕD
H f0@nD - a0¤ < ΕL,

Formula (1.2), by (Definition (limit:)), implies:

(5) "
Ε

Ε>0

$
N

"
n
n³N

H g0@nD - b0¤ < ΕL.

By (5), we can take an appropriate Skolem function such that

(6) "
Ε

Ε>0

"
n

n³N1@ΕD
H g0@nD - b0¤ < ΕL,

Formula (2), using (Definition (limit:)), is implied by:

(7) "
Ε

Ε>0

$
N

"
n
n³N

H Hf0 + g0L@nD - Ha0 + b0L¤ < ΕL.

We assume

(8) Ε0 > 0,

and show

(9) $
N

"
n
n³N

H Hf0 + g0L@nD - Ha0 + b0L¤ < Ε0L.

We have to find  N*** such that

(10) "
n

Hn ³ N*** Þ  Hf0 + g0L@nD - Ha0 + b0L¤ < Ε0L.

Formula (10), using (Definition (+:)), is implied by:

(11) "
n

Hn ³ N*** Þ  f0@nD + g0@nD - Ha0 + b0L¤ < Ε0L.

Formula (11), using (Lemma (|+|)), is implied by:

(12) $
∆,Ε

∆ +Ε=Ε0

"
n

Hn ³ N*** Þ  f0@nD - a0¤ < ∆ ì  g0@nD - b0¤ < ΕL.

We have to find  ∆*, Ε**, and N*** such that

(13) H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ  f0@nD - a0¤ < ∆* ì  g0@nD - b0¤ < Ε**L.

Formula (13), using (6), is implied by:

H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ Ε** > 0ì n ³ N1@Ε**D ì  f0@nD - a0¤ < ∆*L,

which, using (4), is implied by:

H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ ∆* > 0ì Ε** > 0ì n ³ N0@∆*D ì n ³ N1@Ε**DL,
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H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ ∆* > 0ì Ε** > 0ì n ³ N0@∆*D ì n ³ N1@Ε**DL,

which, using (Lemma (max)), is implied by:

(14) H∆* + Ε** = Ε0L í "
n

Hn ³ N*** Þ ∆* > 0ì Ε** > 0ì n ³ max@N0@∆*D, N1@Ε**DDL.

Formula (14) is implied by

(15) H∆* + Ε** = Ε0L í ∆* > 0í Ε** > 0í "
n

Hn ³ N*** Þ n ³ max@N0@∆*D, N1@Ε**DDL.

Partially solving it, formula (15) is implied by

(16) H∆* + Ε** = Ε0L ì ∆* > 0ì Ε** > 0ì HN*** = max@N0@∆*D, N1@Ε**DDL.

Now,

H∆* + Ε** = Ε0L ì ∆* > 0ì Ε** > 0

can be solved for ∆* and Ε** by a call to Collins cad–method yielding a sample solution

∆* ¬
Ε0

2
,

Ε** ¬
Ε0

2
.

Furthermore, we can immediately solve

N*** = max@N0@∆*D, N1@Ε**DD
for N*** by taking

N*** ¬ maxBN0B Ε0

2
F, N1B Ε0

2
FF.

Hence formula (16) is solved, and we are done.

á
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The Algorithm Invention ("Synthesis") Problem

Given a problem specification P (in predicate logic), find an algorithm A 
such that

"
x
P@x, A@xDD.

Examples of specifications P:
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P@x, yD � is–sorted–version@x, yD
P@x, yD � is–integral–of@x, yD
P@x, yD � is–Gröbner–basis@x, yD
....
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Algorithm Synthesis by "Lazy Thinking" (BB 2002)

"Lazy Thinking" Method for Algorithm Synthesis = 

      My Advice to "Humans" (or "Computers") How to Invent Algorithms.

Given: A problem (specification) P.           Find: An algorithm A for P.

Overall Strategy of Lazy Thinking:  (Automatically) reduce problem P to a 
couple of (hopefully simpler) problems  Q, R, ...

until ...

  Ç Å ¡ 24 of 50

 Two Key Ideas of Lazy Thinking

Given: A problem (specification) P.           Find: An algorithm A for P.

§ (Understand the problem "completely": Specification P must be 
spelled out and  "complete" knowledge must be available on the 
notions that occur in the specification P.)

§ Consider known fundamental ideas of how to structure algorithms 
in terms of subalgorithms ("algorithm schemes A"). 

Try one scheme A after the other.
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§

Consider known fundamental ideas of how to structure algorithms 
in terms of subalgorithms ("algorithm schemes A"). 

Try one scheme A after the other.

§ For the chosen scheme A, try to prove   "
x

P[ x, A[x]]: From the 

failing proof construct specifications for the subalgorithms B occur-
ring in A.

Example of an Algorithm Scheme ("Divide and Conquer"):

"
x

A@xD = : S@xD Ü is–trivial–tuple@xD
M@A@L@xDD, A@R@xDDD Ü otherwise

A  is unknown algorithm. 

S, M, L, R  are unknown subalgorithms. 

  Ç Å ¡ 25 of 50

Literature

There is a rich literature on algorithm synthesis methods, see survey

[Basin et al. 2004] D. Basin, Y. Deville, P. Flener, A. Hamfelt, J. F. Nilsson.  
Synthesis of Programs in Computational Logic. In: M. Bruynooghe, K. K. 
Lau (eds.), Program Development in Computational Logic, Lecture Notes in 
Computer Science, Vol. 3049, Springer, 2004, pp. 30-65.

My method is in the class of "scheme-based" methods. Closest (but essen-
tially different):

[Lau et al. 1999] K. K. Lau, M. Ornaghi, S. Tärnlund. Steadfast logic 
programs. Journal of Logic Programming, 38/3, 1999, pp. 259-294.

And the work of A. Bundy and his group (U of Edinburgh) on the auto-
mated invention of induction schemes.
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Example: Synthesis of Merge-Sort [BB et al. 2003]

Problem: Synthesize algorithm "sorted" such that 

"
x
is–sorted–version@x, sorted@xDD.

("Correctness Theorem")

Knowledge on the Problem:

"
x,y

Kis–sorted–version@x, yD �
is–sorted@yD
is–permuted–version@x, yDO

is–sorted@X\D
"
x
is–sorted@Xx\D

"
x,y,z

is–sorted@Xx, y, z\D �
x ³ y

is–sorted@Xy, z\D
etc. (approx. 20 formulae, see notebook of proofs in the Appendix.)

  Ç Å ¡ 27 of 50

An Algorithm Scheme: Divide and Conquer

"
x

A@xD = : S@xD Ü is–trivial–tuple@xD
M@A@L@xDD, A@R@xDDD Ü otherwise

sorted  is unknown algorithm. 

S, M, L, R  are unknown subalgorithms. 

The only thing known is how the unknown algorithm sorted is composed 
from the unknown algorithms  S, M, L, R.
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We now start an (automated) induction prover for proving the correctness 
theorem and analyze the failing proof: see notebooks with failing proofs.

  Ç Å ¡ 28 of 50

Automated Invention of Sufficient Specifications for the 

Subalgorithms

A simple (but amazingly powerful) rule    ( m  ... an unknown subalgorithm ):

Collect temporary assumptions  T[ x0, ... A [ ... ],  ...  ]

and temporary goals G[ x0, ...m  [  A [ ... ]  ]  ]

and produces specification

"
X, ..., Y, ...

ITAX, ...Y, ...E � GAX, ... m AYE E M.
Details: see papers [Buchberger 2003] and example (in appendix).
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The Result of Applying Lazy Thinking in the Sorting Example

Lazy Thinking, automatically (in approx. 1 minute on a laptop using the Theo-

rema system), finds the following specifications for the sub-algorithms that 
provenly guarantee the correctness of the above algorithm (scheme):

"
x

His–trivial–tuple@xD Þ S@xD = xL

"
y,z

is–sorted@yD
is–sorted@zD Þ

is–sorted@M@y, zDD
M@y, zD » Hy ^ zL

"
x

HL@xD ^ R@xD » xL
Note: the specifications generated are not only sufficient but natural !
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What do we have now: A problem reduction !

  Ç Å ¡ 30 of XXX

Example: Synthesis of Insertion-Sort

Synthesize A such that 

"
x
is–sorted–version@x, A@xDD.

Algorithm Scheme: "simple recursion"

A@X\D = c

"
x
A@Xx\D = s@Xx\D

"
x,y

HA@Xx, y\D = i@x, A@Xy\DDL
Lazy Thinking, automatically (in approx. 2 minutes on a laptop using the 
Theorema system), finds the following specifications for the auxiliary 
functions

c = X\
"
x

Hs@Xx\D = Xx\L
"
x,y

is–sorted@Xy\D Þ
is–sorted@i@x, Xy\DD
i@Xx, y\D » Hx \ Xy\L
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A Non-Trivial Algorithm: Gröb-
ner-Bases

"Lazy Thinking" 
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"Lazy Thinking" 

Synthesis of Gröbner-Bases 
Algorithm

  Ç Å ¡ 32 of 50

How Far Can We Go With the "Lazy Thinking" Method ?

Can we automatically synthesize algorithms for non-trivial problems?  What 
is "non-trivial"?

Example of a non-trivial problem (?): construction of Gröbner bases. 

"Non-trivial" part of the invention: The invention of the notion of S-polyno-
mial and the characterization of Gröbner-bases by finitely many S-polyno-
mial checks.

With the "Lazy Thinking" method, it is possible to invent the essential idea of 
Buchberger's Gröbner bases algorithm (1965) fully automatically: See 
[Buchberger 2005, Craciun 2008].
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The Problem of Constructing Gröbner Bases

 

Find algorithm Gb such that
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"
is–finite@FD

is–finite@ Gb@FD D
is–Gröbner–basis@ Gb@FDD
ideal@FD = ideal@ Gb@FDD.

is–Gröbner–basis@GD � is–confluent@ ®G D.
 ®G  ...  a division step.
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Confluence of Division ®G

is–confluent@ ® D : � "
f1,f2

Hf1 «* f2 Þ f1¯*f2L

f1f2
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Knowledge on the Concepts Involved

h1 ®G h2 Þ p . h1 ®G p . h2
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etc.
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Algorithm Scheme "Critical Pair / Completion"

A@FD = A@F, pairs@FDD
A@F, X\D = F

A@F, XXg1, g2\, p\D =

whereBf = lc@g1, g2D, h1 = trd@rd@f, g1D, FD, h2 = trd@rd@f, g2D, FD,
A@F, Xp\D Ü h1 = h2

ABF [ df@h1, h2D, Xp\ ^ [XFk, df@h1, h2D\
k=1,…, F¤_F Ü otherwise F

This scheme can be tried in any domain, in which we have a reduction opera-
tion rd that depends on sets F of objects and a Noetherian relation � which 
interacts with rd in the following natural way: 

"
f,g

Hf � rd@f, gDL.
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The Essential Problem

The problem of synthesizing a Gröbner bases algorithm can now be also 
stated by asking whether starting with the proof of

"
F

is–finite@ A@FD D
is–Gröbner–basis@ A@FDD
ideal@FD = ideal@ A@FDD.

using the above scheme for A  we can automatically produce the idea that

lc@g1, g2D = lcm@lp@g1D, lp@g2DD
and
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and

df@h1, h2D = h1 -h2

and prove that the idea is correct.

  Ç Å ¡ 38 of 50

Now Start the (Automated) Correctness Proof

With current theorem proving technology, in the Theorema system (and 
other provers), the proof attempt can be done automatically. 

( PhD thesis 2008 by my  student A. Craciun.)
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Details

It should be clear that, if the algorithm terminates, the final result is a finite 
set (of polynomials) G that has the property

"
g1,g2ÎG

KwhereBf = lc@g1, g2D, h1 = trd@rd@f, g1D, FD,
h2 = trd@rd@f, g2D, FD, ë ; h1 = h2

df@h1, h2D Î G
FO.

We now try to prove that, if G has this property, then 

is–finite@GD,
ideal@FD = ideal@GD,
is–Gröbner–basis@GD,

i.e. is–Church–Rosser@ ®G D.
Here, we only deal with the third, most important, property. 

  Ç Å ¡ 40 of 50

Using Available Knowledge
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Using Available Knowledge

Using Newman's lemma and some elementary properties it can be shown 
that it is sufficient to prove

is–Church–Rosser@ ®G D � "
p

"
f1,f2

KK; p ® f1

p ® f2
O Þ f1¯*f2O.

Newman's lemma (1942):

is–Church–Rosser@ ® D � "
f,f1,f2

KK; f ® f1

f ® f2
O Þ f1¯*f2O.

Definition of "f1 and f2 have a common successor":

f1¯*f2 � $
g

f1 ®* g

f2 ®* g
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The (Automated) Proof Attempt   

Let now the power product p and the polynomials f1, f2 be arbitary but fixed 
and assume

; p ®G f1

p ®G f2.

We have to find a polyonomial g such that

f1 ®G
* g,

f2 ®G
* g.

From the assumption we know that there exist polynomials g1 and g2 in G 
such that

lp@g1D p,

f1 = rd@p, g1D,
lp@g2D p,

f2 = rd@p, g2D.
From the final situation in the algorithm scheme we know that for these g1 
and g2
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ë ; h1 = h2

df@h1, h2D Î G,

where

h1 := trd@f1', GD, f1' := rd@lc@g1, g2D, g1D,
h2 := trd@f2', GD, f2' := rd@lc@g1, g2D, g2D.

  Ç Å ¡ 42 of 50

Case h1=h2

lc@g1, g2D ®g1 rd@lc@g1, g2D, g1D ®G
* trd@rd@lc@g1, g2D, g1D, GD =

trd@rd@lc@g1, g2D, g2D, GD ¬G
* rd@lc@g1, g2D, g2D ¬g2 lc@g1, g2D.

(Note that here we used the requirements rd[lc[g1,g2],g1]�lc[g1,g2] and 
rd[lc[g1,g2],g2]�lc[g1,g2].)

Hence, by elementary properties of polynomial reduction,

"
a,q

H a q lc@g1, g2D ®g1

a q rd@lc@g1, g2D, g1D ®G
* a q trd@rd@lc@g1, g2D, g1D, GD =

a q trd@rd@lc@g1, g2D, g2D, GD ¬G
* a q rd@lc@g1, g2D, g2D ¬g2

a q lc@g1, g2D L.
Now we are stuck in the proof.

  Ç Å ¡ 43 of 50

Now Use the Specification Generation Algorithm

Using the above specification generation rule, we see that we could pro-
ceed successfully with the proof if lc[g1,g2] satisfied the following 
requirement

"
p,g1,g2

lp@g1D p

lp@g2D p
Þ $

a,q
Hp = a q lc@g1, g2D L , Hlc requirementL

With such an lc, we then would have 
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p ®g1 rd@p, g1D =

a q rd@lc@g1, g2D, g1D ®G
* a q trd@rd@lc@g1, g2D, g1D, GD =

a q trd@rd@lc@g1, g2D, g2D, GD ¬G
* a q rd@lc@g1, g2D, g2D =

rd@p, g2D ¬g2 p

and, hence,

f1 ®G
* a q trd@rd@lc@g1, g2D, g1D, GD,

f2 ®G
* a q trd@rd@lc@g1, g2D, g1D, GD,

i.e. we would have found a suitable g.
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Summarize the (Automatically Generated) Specifications of the 

Subalgorithm lc

Using the above specification generation rule, we see that we could pro-
ceed successfully with the proof if lc[g1,g2] satisfied the following 
requirement

"
p,g1,g2

lp@g1D p

lp@g2D p
Þ Hlc@g1, g2D pL ,

and the requirements:

lp@g1D lc@g1, g2D,
lp@g2D lc@g1, g2D.

Now this problem can be attacked independently of any Gröbner bases the-
ory, ideal theory etc.

  Ç Å ¡ 45 of 50
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A Suitable lc

lcp@g1, g2D = lcm@lp@g1D, lp@g2DD
is a suitable function that satisfies the above requirements.

Eureka! The crucial function lc (the "critical pair" function) in the critical pair / 
completion algorithm scheme has been synthesized automatically!

  Ç Å ¡ 46 of 50

Case h1¹h2 

In this case, df[h1,h2]ÎG: 

In this part of the proof we are basically stuck right at the beginning.

We can try to reduce this case to the first case, which would generate the 
following requirement

"
h1,h2

Hh1 ¯8df@h1,h2D<*h2L Hdf requirementL.
  Ç Å ¡ 47 of 50

Looking to the Knowledge Base for a Suitable df

(Looking to the knowledge base of elementary properties of polynomial 
reduction, it is now easy to find a function df  that satifies (df requirement), 
namely

df@h1, h2D = h1 - h2,

because, in fact,

"
f,g

Hf ¯8f-g<*gL.
Eureka! The function df (the "completion" function) in the critical pair / com-
pletion algorithm scheme has been "automatically" synthesized!)

  Ç Å ¡ 48 of 50
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Conclusion

Automation of mathematical reasoning 
("formal methods") is in the center of the 
technology spiral:
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Reasoning Mathematics / Software Economy Welfare Science & Technology
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Appendix: The Proofs Generated During the 
Automated Synthesis of the Merge-Sort Algorithm

à First Proof Attempt 

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,
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(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x1D IXX0\ � x1 Þ is–sorted–version@x1, sorted@x1DDM
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(2) "
is–tuple@x1D IXX0\ � x1 Þ is–sorted–version@x1, sorted@x1DDM

We have to show:  

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1: 

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula (1), by  HLemma HClosure of SpecialLL, implies:

(12)is–tupleAspecialAXX0\EE.

By (1),Formula (5), using (Definition (is sorted version)), is implied by:

(13)is–tupleAspecialAXX0\EE ì specialAXX0\E » XX0\ ì is–sortedAspecialAXX0\EE.

Not all the conjunctive parts of (13)can be proved.

Proof of (13.1) is–tupleAspecialAXX0\EE:

Formula (13.1) is true because it is identical to (12).

Proof of (13.2) specialAXX0\E » XX0\:

Formula (13.3), using (10), is implied by:

(14)specialAXX0\E = XX0\.

The proof of (14)fails. (The prover "QR" was unable to transform the proof situation.)

Proof of (13.4) is–sortedAspecialAXX0\EE:

Pending proof of (13.4).

Case 2: 

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

Pending proof of (8).

á

à Second Proof Attempt (with Specifications of Subalgorithms Extractd from First Proof 

Attempt)
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à

Second Proof Attempt (with Specifications of Subalgorithms Extractd from First Proof 

Attempt)

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,
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(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D Þ Hspecial@X1D = X1LL.

We try to prove (Theorem (correctness of sort)) by applying several proof methods for sequences. 

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x2D IXX0\ � x2 Þ is–sorted–version@x2, sorted@x2DDM

We have to show:  

Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb 41



(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1: 

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula  (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula  (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E ì XX0\ » XX0\ ì is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ » XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2: 

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1), 
(Lemma (splits are shorter): 1) and (Lemma (splits are shorter): 2), we obtain: 

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,
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(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Not all the conjunctive parts of (41)can be proved.

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1),  by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.3) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\:

The proof of (41.3)fails. (The prover "QR" was unable to transform the proof situation.)

Proof of (41.4) 
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

Pending proof of (41.4).

á

à Third Proof Attempt (with Specifications of Subalgorithms Extractd from Second Proof 

Attempt)

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,
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(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,
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(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D ì is–sorted@X1D Þ Hspecial@X1D = X1LL,

(Lemma (conjecture44): conjecture44)

"
X2,X3,X4

is–tuple@X4D
His–tuple@X2D ì left–split@X4D » X2ì

is–sorted@X2D ì is–tuple@X3D ì right–split@X4D » X3ì
is–sorted@X3D ì Ø is–trivial–tuple@X4D Þ merged@X2, X3D » X4L

.

We try to prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x3D IXX0\ � x3 Þ is–sorted–version@x3, sorted@x3DDM

We have to show:  

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We try to prove (3) by case distinction using (Algorithm (sorted)). However, the proof fails in at least one of the cases.

Case 1: 
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Case 1: 

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula  (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula  (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E ì XX0\ » XX0\ ì is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ » XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2: 

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1), 
(Lemma (splits are shorter): 1) and (Lemma (splits are shorter): 2), we obtain: 

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.
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(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

Not all the conjunctive parts of (41)can be proved.

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1),  by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.2) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\:

Formula (41.2), using (Lemma (conjecture44): conjecture44), is implied by:

(44)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE ì Ø is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (44):

Proof of (44.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (44.1) is true because it is identical to (25.1).

Proof of (44.2) left–splitAXX0\E » sortedAleft–splitAXX0\EE:

Formula (44.2) is true because it is identical to (25.1).

Proof of (44.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (44.3) is true because it is identical to (25.3).

Proof of (44.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (44.4) is true because it is identical to (26.1).
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Formula (44.4) is true because it is identical to (26.1).

Proof of (44.5) right–splitAXX0\E » sortedAright–splitAXX0\EE:

Formula (44.5) is true because it is identical to (26.2).

Proof of (44.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (44.6) is true because it is identical to (26.2).

Proof of (44.7) Ø is–trivial–tupleAXX0\E:

Formula (44.7) is true because it is identical to (6).

Proof of (41.3) 
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

The proof of (41.3) fails. (The prover "QR" was unable to transform the proof situation.)

á

à Successful Proof (with Specifications of Subalgorithms Extractd from Third Proof 

Attempt)

Prove:

(Theorem (correctness of sort)) "
is–tuple@XD is–sorted–version@X, sorted@XDD,

under the assumptions:

(Definition (is sorted): 1)is–sorted@X\D,

(Definition (is sorted): 2)"
x
is–sorted@Xx\D,

(Definition (is sorted): 3) "
x,y,z

His–sorted@Xx, y, z\D � x ³ y ì is–sorted@Xy, z\DL,

(Definition (is permuted version): 1)X\ » X\,

(Definition (is permuted version): 2) "
y,y

HX\ M Xy, y\L,

(Definition (is permuted version): 3) "
x,x,y

HXy\ » Xx, x\ � x Î Xy\ ì dfo@x, Xy\D » Xx\L,

(Definition (is sorted version))

"
X,Y

is–tuple@XD
His–sorted–version@X, YD � is–tuple@YD ì X » Y ì is–sorted@YDL,

(Proposition (is tuple tuple))"
x
is–tuple@Xx\D,

(Definition (prepend): \) "
x,y

Hx \ Xy\ = Xx, y\L,

(Proposition (singleton tuple is singleton tuple))"
x
is–singleton–tuple@Xx\D,

48 Buchberger-Klagenfurt-Lazy-Thinking-2011-05-19.nb



(Definition (is trivial tuple))

"
is–tuple@XD His–trivial–tuple@XD � is–empty–tuple@XD ê is–singleton–tuple@XDL,

(Definition (is element): 1)"
x

Hx Ï X\L,

(Definition (is element): 2) "
x,y,y

Hx Î Xy, y\ � Hx = yL ê x Î Xy\L,

(Definition (deletion of the first occurrence): 1)"
a

Hdfo@a, X\D = X\L,

(Definition (deletion of the first occurrence): 2)

"
a,x,x

Hdfo@a, Xx, x\D = °Xx\ Ü x = a, x \ dfo@a, Xx\D Ü otherwise´L,

(Definition (is longer than): 1) "
y

HX\ � Xy\L,

(Definition (is longer than): 2) "
x,x

HXx, x\ � X\L,

(Definition (is longer than): 3) "
x,x,y,y

HXx, x\ � Xy, y\ � Xx\ � Xy\L,

(Proposition (trivial tuples are sorted)) "
x

is–trivial–tuple@Xx\D
is–sorted@Xx\D,

(Proposition (only trivial tuple permuted version of itself)) "
x,Y

is–trivial–tuple@Xx\D
HHY = Xx\L Þ Y » Xx\L,

(Proposition (reflexivity of permuted version))"
x

HXx\ » Xx\L,

(Algorithm (sorted))

"
is–tuple@XD Hsorted@XD = °special@XD Ü is–trivial–tuple@XD,

merged@sorted@left–split@XDD, sorted@right–split@XDDD Ü otherwise´L
,

(Lemma (closure of special)) "
X

is–tuple@XDìis–trivial–tuple@XD
is–tuple@special@XDD,

(Lemma (splits are tuples): 1) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@left–split@XDD,

(Lemma (splits are tuples): 2) "
X

is–tuple@XDìØis–trivial–tuple@XD
is–tuple@right–split@XDD,

(Lemma (splits are shorter): 1) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � left–split@XDL,

(Lemma (splits are shorter): 2) "
is–tuple@XD

Øis–trivial–tuple@XD
HX � right–split@XDL,

(Lemma (closure of merge)) "
is–tuple@XD
is–tuple@YD

is–tuple@merged@X, YDD,

(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D ì is–sorted@X1D Þ Hspecial@X1D = X1LL,
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(Lemma (conjecture15): conjecture15)

"
X1

is–tuple@X1D
His–trivial–tuple@X1D ì is–sorted@X1D Þ Hspecial@X1D = X1LL,

(Lemma (conjecture44): conjecture44)

"
X2,X3,X4

is–tuple@X4D
His–tuple@X2D ì left–split@X4D » X2ì

is–sorted@X2D ì is–tuple@X3D ì right–split@X4D » X3ì
is–sorted@X3D ì Ø is–trivial–tuple@X4D Þ merged@X2, X3D » X4L

,

(Lemma (conjecture46): conjecture46)

"
X5,X6,X7

is–tuple@X7D
His–tuple@X5D ì left–split@X7D » X5 ì

is–sorted@X5D ì is–tuple@X6D ì right–split@X7D » X6 ì
is–sorted@X6D ì Ø is–trivial–tuple@X7D Þ is–sorted@merged@X5, X6DDL

.

We prove (Theorem (correctness of sort)) by well–founded induction on X .

Well–founded induction:

Assume:

(1)is–tupleAXX0\E.

Well–Founded Induction Hypothesis:

(2) "
is–tuple@x4D IXX0\ � x4 Þ is–sorted–version@x4, sorted@x4DDM

We have to show:  

(3)is–sorted–versionAXX0\, sortedAXX0\EE.

We prove (3) by case distinction using (Algorithm (sorted)).

Case 1: 

(4)is–trivial–tupleAXX0\E.

Hence, we have to prove

(5)is–sorted–versionAXX0\, specialAXX0\EE.

Formula (4), by (Proposition (trivial tuples are sorted)), implies:

(9)is–sortedAXX0\E.

Formula (4), by (Proposition (only trivial tuple permuted version of itself)), implies:

(10)"
Y

IIY = XX0\M Þ Y » XX0\M.

Formula  (1) and (4), by (Lemma (closure of special)), implies:
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Formula  (1) and (4), by (Lemma (closure of special)), implies:

(11)is–tupleAspecialAXX0\EE.

Formula  (1) and (4), by (Lemma (conjecture15): conjecture15), implies:

(13)specialAXX0\E = XX0\.

Formula (5), using (13), is implied by:

(21)is–sorted–versionAXX0\, XX0\E.

Formula (21), using (Definition (is sorted version)), is implied by:

(22)is–tupleAXX0\E ì XX0\ » XX0\ ì is–sortedAXX0\E.

We prove the individual conjunctive parts of (22):

Proof of (22.1) is–tupleAXX0\E:

Formula (22.1) is true because it is identical to (1).

Proof of (22.2) XX0\ » XX0\:

Formula (22.2) is true by (10).

Proof of (22.3) is–sortedAXX0\E:

Formula (22.3) is true because it is identical to (9).

Case 2: 

(6)Ø is–trivial–tupleAXX0\E.

Hence, we have to prove

(8)is–sorted–versionAXX0\,
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE.

From (6) , by (2), (Lemma (splits are tuples): 1), (Lemma (splits are tuples): 2), (Lemma (splits are shorter): 1), 
(Lemma (splits are shorter): 1) and (Lemma (splits are shorter): 2), we obtain: 

(23)is–sorted–versionAleft–splitAXX0\E, sortedAleft–splitAXX0\EEE,

(24)is–sorted–versionAright–splitAXX0\E, sortedAright–splitAXX0\EEE,

From (23), by (Definition (is sorted version)), we obtain:

(25)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE

.

From (24), by (Definition (is sorted version)), we obtain:

(26)is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE

.

From (1) and (8), using (Definition (is sorted version)), is implied by:

(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.
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(41)is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE ì
mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\ ì
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE

.

We prove the individual conjunctive parts of (41):

Proof of (41.1) is–tupleAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

 (41.1),  by (Lemma (closure of merge)) is implied by:

(42)is–tupleAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE.

We prove the individual conjunctive parts of (42):

Proof of (42.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (42.1) is true because it is identical to (25.1).

Proof of (42.2) is–tupleAsortedAright–splitAXX0\EEE:

Formula (42.2) is true because it is identical to (26.1).

Proof of (41.2) mergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEE » XX0\:

Formula (41.2), using (Lemma (conjecture44): conjecture44), is implied by:

(44)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE ì Ø is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (44):

Proof of (44.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (44.1) is true because it is identical to (25.1).

Proof of (44.2) left–splitAXX0\E » sortedAleft–splitAXX0\EE:

Formula (44.2) is true because it is identical to (25.1).

Proof of (44.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (44.3) is true because it is identical to (25.3).

Proof of (44.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (44.4) is true because it is identical to (26.1).

Proof of (44.5) right–splitAXX0\E » sortedAright–splitAXX0\EE:

Formula (44.5) is true because it is identical to (26.2).

Proof of (44.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (44.6) is true because it is identical to (26.2).

Proof of (44.7) Ø is–trivial–tupleAXX0\E:

Formula (44.7) is true because it is identical to (6).

Proof of (41.3) 
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:
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Proof of (41.3) 
is–sortedAmergedAsortedAleft–splitAXX0\EE, sortedAright–splitAXX0\EEEE:

Formula (41.3), using (Lemma (conjecture46): conjecture46), is implied by:

(52)is–tupleAsortedAleft–splitAXX0\EEE ì
left–splitAXX0\E » sortedAleft–splitAXX0\EE ì
is–sortedAsortedAleft–splitAXX0\EEE ì is–tupleAsortedAright–splitAXX0\EEE ì
right–splitAXX0\E » sortedAright–splitAXX0\EE ì
is–sortedAsortedAright–splitAXX0\EEE ì Ø is–trivial–tupleAXX0\E

.

We prove the individual conjunctive parts of (52):

Proof of (52.1) is–tupleAsortedAleft–splitAXX0\EEE:

Formula (52.1) is true because it is identical to (25.1).

Proof of (52.2) left–splitAXX0\E » sortedAleft–splitAXX0\EE:

Formula (52.2) is true because it is identical to (25..2).

Proof of (52.3) is–sortedAsortedAleft–splitAXX0\EEE:

Formula (52.3) is true because it is identical to (25.3).

Proof of (52.4) is–tupleAsortedAright–splitAXX0\EEE:

Formula (52.4) is true because it is identical to (26.1).

Proof of (52.5) right–splitAXX0\E » sortedAright–splitAXX0\EE:

Formula (52.5) is true because it is identical to (26.2).

Proof of (52.6) is–sortedAsortedAright–splitAXX0\EEE:

Formula (52.6) is true because it is identical to (26.3).

Proof of (52.7) Ø is–trivial–tupleAXX0\E:

Formula (52.7) is true because it is identical to (6).

á
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