Review: Intra-coding using non-linear prediction, KLT and Texture Synthesis [Slides][Video]

The review of the TEWI colloquium of Prof. Dr.-Ing. Jörn Ostermann from July 12, 2018 comprises the slides (below) and video here.

Abstract: We present a comparison between AV1, HEVC and JEM. It reveals that professionally optimized AV1 encoding software is about 32 times as complex as the HEVC encoder software HM. Given the wide attention that AV1 receives and the plans of Google and Facebook to actually use AV1 in commercial environments, the complexity constraints endured during the HEVC development seem to disappear. We present recent results on contour-based prediction for intra coding, a KLT depending on scene and intra prediction direction for coding the prediction error and texture synthesis to replace conventional texture coding for uniform parts of images. Especially contour-based prediction and texture synthesis depend heavily on computer vision algorithms. While typically failures of efficient prediction can be compensated by coding the prediction error and hence a higher data rate, texture synthesis in video coding does not have this safety leash.

BioJörn Ostermann studied Electrical Engineering and Communications Engineering at the University of Hannover and Imperial College London, respectively. He received Dipl.-Ing. and Dr.-Ing. from the University of Hannover in 1988 and 1994, respectively. From 1988 till 1994, he worked as a Research Assistant at the Institut für Theoretische Nachrichtentechnik conducting research in low bit-rate and object-based analysis-synthesis video coding. In 1994 and 1995 he worked in the Visual Communications Research Department at AT&T Bell Labs on video coding. He was a member of Image Processing and Technology Research within AT&T Labs – Research from 1996 to 2003. Since 2003 he is Full Professor and Head of the Institut für Informationsverarbeitung at Leibniz Universität Hannover, Germany. Since 2008, he is the Chair of the Requirements Group of MPEG (ISO/IEC JTC1 SC29 WG11). Jörn was a scholar of the German National Foundation. In 1998, he received the AT&T Standards Recognition Award and the ISO award. He is a Fellow of the IEEE (class of 2005). Joern served as a Distinguished Lecturer of the IEEE CAS Society (2002/2003). He published more than 100 research papers and book chapters. He is coauthor of a graduate level text book on video communications. He holds more than 30 patents.

Posted in TEWI-Kolloquium | Leave a comment

Intra-coding using non-linear prediction, KLT and Texture Synthesis: AV1 encoders open the door to seemingly unconstrained video coding complexity

Prof. Dr.-Ing. Jörn Ostermann | July 12, 2018 | 10:00am | E.2.42

Abstract: We present a comparison between AV1, HEVC and JEM. It reveals that professionally optimized AV1 encoding software is about 32 times as complex as the HEVC encoder software HM. Given the wide attention that AV1 receives and the plans of Google and Facebook to actually use AV1 in commercial environments, the complexity constraints endured during the HEVC development seem to disappear. We present recent results on contour-based prediction for intra coding, a KLT depending on scene and intra prediction direction for coding the prediction error and texture synthesis to replace conventional texture coding for uniform parts of images. Especially contour-based prediction and texture synthesis depend heavily on computer vision algorithms. While typically failures of efficient prediction can be compensated by coding the prediction error and hence a higher data rate, texture synthesis in video coding does not have this safety leash.

BioJörn Ostermann studied Electrical Engineering and Communications Engineering at the University of Hannover and Imperial College London, respectively. He received Dipl.-Ing. and Dr.-Ing. from the University of Hannover in 1988 and 1994, respectively. From 1988 till 1994, he worked as a Research Assistant at the Institut für Theoretische Nachrichtentechnik conducting research in low bit-rate and object-based analysis-synthesis video coding. In 1994 and 1995 he worked in the Visual Communications Research Department at AT&T Bell Labs on video coding. He was a member of Image Processing and Technology Research within AT&T Labs – Research from 1996 to 2003. Since 2003 he is Full Professor and Head of the Institut für Informationsverarbeitung at Leibniz Universität Hannover, Germany. Since 2008, he is the Chair of the Requirements Group of MPEG (ISO/IEC JTC1 SC29 WG11). Jörn was a scholar of the German National Foundation. In 1998, he received the AT&T Standards Recognition Award and the ISO award. He is a Fellow of the IEEE (class of 2005). Joern served as a Distinguished Lecturer of the IEEE CAS Society (2002/2003). He published more than 100 research papers and book chapters. He is coauthor of a graduate level text book on video communications. He holds more than 30 patents.

Posted in TEWI-Kolloquium | Leave a comment

Review: Solving x’=? [Slides]

The review of the TEWI colloquium of Prof. Konstantin Mischaikow from June 6, 2018 comprises the slides (below).

Abstract

With the advent of every improving information technologies, science and engineering is being being evermore guided by data-driven models and large-scale computations.  In this setting, one often is forced to work with models for which the nonlinearities are not derived from first principles and quantitative values for parameters are not known.

With this in mind, I will describe an alternative approach formulated in the language of combinatorics and algebraic topology that is inherently multiscale, amenable to mathematically rigorous results based on discrete descriptions of dynamics, computable, and capable of recovering robust dynamic structures.

To keep the talk grounded, I will discuss the ideas in the context of modeling of gene regulatory networks.

CV

Konstantin Mischaikow earned his Master and PhD degree at the University of Wisconsin–Madison in 1983 and 1985, respectively. Currently he is a Distinguished Professor at Rutgers University, New Jersey, USA. His main research interests are topological methods for the analysis of dynamical systems, computational topology and mathematical biology.  Professor Mischaikow has supervised 16 PhD theses and has been advisor of 21 postdocs. He has over 110 publications, including four books.

He is a leading expert of Conley theory, as well as of rigorous computer-assisted computations. One of his most celebrated results is the proof of chaos in the Lorenz attractor, which serves as a prominent example of the application of both techniques.  In 2014, in recognition of his contributions to dynamical systems as well as to applied and computational topology, Professor Mischaikow was elected to be a fellow of the American Mathematical Society.

Posted in TEWI-Kolloquium | Leave a comment

Review: Machine Learning Applications to Internet of Things [Slides]

The review of the TEWI colloquium of Dr. Hari Prabhat Gupta from June 22, 2018 comprises the slides (below).

Abstract

Internet of Things (IoT) is growing rapidly in decades, various applications came out from academia and industry. IoT is an amazing future to the Internet, but there remain some challenges to IoT for human have never dealt with so many devices and so much amount of data. Machine Learning (ML) is the technique that allows computers to learn from data without being explicitly programmed. Generally, the aim is to make predictions after learning and the process operates by building a model from the given (training) data and then makes predictions based on that model. Machine learning is closely related to artificial intelligence, pattern recognition and computational statistics and has strong relationship with mathematical optimization. In this talk, we focus on ML applications to IoT. Specially, we focus on the existing ML techniques that are suitable for IoT. We also consider the issues and challenges for solving the IoT problems using ML techniques.

CV

Dr. Hari Prabhat Gupta received the B.E. degree in Computer Engineering from Government Engineering College Ajmer, Ajmer, India, the M.Tech. and Ph.D degrees in Computer Science and Engineering from the Indian Institute of Technology Guwahati (IITG), Guwahati, India. He worked with Samsung R&D Bangalore, India. He has received a research fellowship from TATA Consultancy Services, India. He is currently working as Assistant Professor in Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, India. His research interests include wireless sensor networks, wireless ad hoc networks, and distributed algorithms. He has published various IEEE and ACM conference papers and Journals in the field of wireless sensor networks.

Posted in TEWI-Kolloquium | Leave a comment

Flex: IT Smart Manufacturing (m/w)

Um unsere interne Vorreiterrolle weiter auszubauen, suchen wir Mitarbeiterinnen und Mitarbeiter, die neueste IT-Technologien auswählen und zu unserem maximalen Nutzen implementieren. Ziel ist es die Digitalisierung unserer Produktion weiter voranzutreiben. Daher besetzen wir umgehend eine Junior Stelle als Data Engineer im Bereich:

IT Smart Manufacturing (m/w) [PDF]

Ihr Aufgabengebiet:

Sie sind Teil eines kleinen Expertenteams, das mittels Open Source Technologien (u.a. Elastic Stack) ein digitales Abbild unserer Produktion bereitstellt. Durch die Verknüpfung von Prozess-, Maschinen- und Umgebungsdaten wird die Produktion optimiert und nicht ausgeschöpfte Potenziale identifiziert. Das Abteilungsziel ist es maßgeblich an der Umsetzung von Schlagwörtern wie Data Driven Analytics, Predictive Maintenance und Data Democratization am Standort Althofen mitzuwirken.

Ihr Profil:

  • Sie eigenen sich eigenständig Wissen an, um aktuelle Technologien zu verstehen und bewerten zu können
  • Sie suchen nach Lösungen und nicht nach Problemen
  • Sie möchten selbst Hand anlegen und Themen eigenständig umsetzen

Ihre Fähigkeiten:

  • Grundkenntnisse in Linux und Open Source Tools
  • Grundkenntnisse in Datenbankstrukturen
  • Grundkenntnisse in Netzwerktechnik
  • Innovationsdenken und ausgeprägtes Qualitätsbewusstsein
  • Kommunikationssicheres Englisch (Wort und Schrift)

Unser Angebot:

  • Eine interessante und herausfordernde Tätigkeit in einem internationalen Unternehmen mit attraktive Weiterbildungsmöglichkeiten
  • Die Möglichkeit bei flexibler Arbeitszeit Ihr Fachwissen in abwechslungsreiche Projekte einfließen zu lassen
  • Spannende Mitarbeiterevents und ein angenehmes Betriebsklima
  • Wir bieten ein KV Bruttomonatsgehalt laut der Beschäftigungsgruppe E lt. Kollektiv Elektro- und Elektronikindustrie mit der Bereitschaft zur Überzahlung je nach Qualifikation und Berufserfahrung

Wir freuen uns auf Ihre aussagekräftigen Bewerbungsunterlagen, die Sie bitte per E-Mail an Frau Gerda Reif (karriere@flex.com) senden.

Flex ist ein weltweit führendes Technologieunternehmen mit mehr als 200.000 Mitarbeitern in 30 Ländern. Unter dem Leitsatz „live smarter“ werden intelligente Produkte für eine vernetzte Welt entwickelt und produziert. Der innovative High-Tech Konzern hat sein europäisches Kompetenzzentrum in Kärnten. Am Standort Althofen werden elektronische Module und Komplettgeräte für internationale Kunden hergestellt. Die Bandbreite reicht von der Produktentwicklung über die Fertigung bis hin zu maßgeschneiderten Logistiklösungen.

Posted in Stellenausschreibungen | Leave a comment

Review: Teaching and practicing the students‘ knowledge using games [Slides][Video]

The review of the TEWI colloquium of Karel Perutka from June 13, 2018 comprises the slides (below) and video here.

Abstract

The main idea of this strategy is based on the essential textbook of pedagogy Orbis sensualium pictus which was written according to Komenský’s belief that the school should be a game. It was first published in Nürnberg in 1658. He believed, contrary to the teaching practices at the time, that the pupils should be able to teach learned matter not only to renounce mechanically but to understand what they were learning. He, therefore, provided a textbook with some illustrations so that it would be captivating for the children. It was about biology (living and inanimate nature), theology and man, something that can now be called the foundations of social sciences.

Modern times have brought new opportunities to implement this strategy.

For example, using simple computer games for practicing and verifying the student’s knowledge. During the lecture, several computer games created for this purpose will be presented. Games are primarily designed to teach automation and programming in MATLAB software at university.

They are created in the way that the data about the matter are read from an external file. This file is enough to be edited and used for any subject of the study program. In the lecture, there will also be introduced several electronic aids facilitating the teaching of work with graphics programs and programs in the office at secondary schools in the Czech Republic. All these games and utilities were rated by students using questionnaires after the completion of the courses, and these results will be presented, too.

Bio

Karel Perutka received his Ph.D. degree in 2007 at Tomas Bata University in Zlin, Faculty of Applied Informatics, Czech Republic, where he is the senior lecturer. Technical Cybernetics was the principal branch of his first research. Karel Perutka was the editor of the book about MATLAB (http://www.intechopen.com/books/matlab-for-engineers-applications-in-control-electrical-engineering-it-and-robotics), the author of one monograph about MATLAB, several book chapters about MATLAB and control theory, and author or co-author of more than 80 papers in the conference proceedings. He is a member of the organizing and reviewing committees of several conferences. He lead more 100 Bachelor and Master Theses.

Karel Perutka is teaching MATLAB programming, electronics, microelectronics, diagnosis of digital systems and modulations and demodulations of signals. He is the most popular teacher of curriculum IT for administrative studiesvoted by students where he teaches the software used in the office.

His main research interests are adaptive control, real-time control, control of multivariable systems, application of MATLAB and new methods of teaching programming and creating didactic aids for secondary schools, programming in C++ and VBA in MS Excel.

He is working on the topic Teaching and practicing the students knowledge using games for last 6 years. He lead the students of Master degree Teachers of Informatics for 6 years, he published 15 papers about this topic, created several teaching games and multimedia tools with the focus in the control theory, the computer graphics, the software in office.

He gave lectures at universities in Europe, mostly in Portugal where he visited ISEP Porto, IST Lisboa, UTAD Vila Real, UA Faro.

He speaks 4 foreign languages. Austria is his favorite country. He goes in Austria also for vacation every year.

Posted in TEWI-Kolloquium | Leave a comment

Lam Research Internship: Information Technologies (f/m)

Internship: Information Technologies (f/m)

[PDF]

As a leading global supplier of wafer fabrication equipment and services to the semiconductor industry, Lam Research develops innovative solutions that help our customers build smaller, faster, and more power-efficient devices.

This success is the result of our employees‘ diverse technical and business expertise, which fuels close collaboration and ongoing innovation.

Join the Lam Research team, where you can write your own success story. Come help us solve our customers‘ toughest problems and be part of a company that plays a vital role in the future of electronics.

Lam Research – a company where successful people want to work.


Location: Austria, 9500 Villach
Employee type: Full time
Contract: Intern
Job ID: 105941
Desired start date: July 9, 2018


Job Description

As a member of our Villach / Europe IT team, you will be required to perform a POC (Proof of Concept) that contributes to one of the following areas

  • Client performance / application performance monitoring
  • Visitor’s application
  • Labor Reporting application / mobile app
  • Asset Management as part of ITIL framework
  • Integration of smart glasses into daily work
  • Intelligent eMail processing/categorizing

Main activities

  • Requirements analysis
  • Development of prototype
  • Summarize feedback from requestor
  • Identify benefit
  • Present results to stakeholders

Required Qualification

  • University student
  • Development knowledge in C# and .net
  • Excellent oral and written communication skills in English
  • Ability to work with end users as well as with technical colleagues

Compensation

This position is subject to the Austrian Collective Bargaining Agreement for internship in the Metal Technology Industries, occupational group A. The minimum salary for the position (f/m) is 1.848,08 EUR gross per month based on a full-time intern employment.

Application

We are looking forward to receiving your application at: careers.lamresearch.com (Search by Keyword: 105941)

Posted in Stellenausschreibungen | Leave a comment

Rückblick: Aktivierende Elemente in der Lehrer(innen)bildung [Slides][Video]

Der Rückblick zum TEWI-Kolloquium von Dr. rer. nat. Markus Alexander Helmerich am 24. Mai 2018 beinhaltet die Präsentationsfolien sowie ein Video (Screencast).

Präsentationsfolien:

Kurzfassung:

Die Leitidee der Siegener Lehrer(innen)bildung ist es, die angehenden Lehrerinnen und Lehrer zu einem reflektierten Handeln in Lehr-Lern-Situationen zu befähigen. Die Umsetzung dieser Leitidee erfordert eine starke Aktivierung der Lehramtsstudierenden in den Lehrveranstaltungen.
In unseren Vorlesungen, Übungen und Seminaren wurden verschiedene aktivierende Elemente und didaktische Prinzipien für eine aktivierende Lehre zur Förderung einer bewussten Haltung eingesetzt.
Beispielhaft für diesen Ansatz wird das Seminar „Schüler handeln, forschen und entdecken“ vorgestellt und diskutiert werden. Darin konzipieren Studierende Mathematik-Projekte, die mit Lerngruppen in der Siegener MatheWerkstatt durchgeführt werden, und analysieren anschließend  die Lehr-Lern-Prozesse. In dieser praxisorientierten Auseinandersetzung mit mathematischen Inhalten und der Gestaltung von Lernarrangements lernen die Studierenden, ihr Handeln und ihre Erfahrungen mathematikdidaktisch zu reflektieren.
Präsentiert werden das Siegener Leitbild für die Lehrer(innen)bildung sowie die unterschiedlichen Planungsdimensionen des Seminars anhand von Erlebnissen und Analysen der Studierenden.

CV:

HelmerichMarkus Alexander HELMERICH ist wissenschaftlicher Mitarbeiter in der Abteilung Didaktik der Mathematik des Departments für Mathematik an der Naturwissenschaftlich-Technischen Fakultät und im Sommer-semester 2018 Gastprofessor für Didaktik der Mathematik an der Alpen-Adria-Universität Klagenfurt. Nach dem Abschluss des Diplom-studiums in Mathematik an der Technischen Universität Darmstadt (2002) widmete er sich im Rahmen seiner Dissertation zu „Linien-diagrammen in der Wissenskommunikation“ (2008, ebenfalls TU Darmstadt) der Verbindung von Methoden der formalen Begriffs-analyse, der Semiotik und der Mathematikdidaktik. Von 2005-2009 war er Geschäftsführer des Ernst-Schröder-Zentrums für Begriffliche Wissensverarbeitung e.V. in Darmstadt. Der interdisziplinären Verbindung fachwissenschaftlicher, wissenschaftshistorischer und -philosophischer sowie fachdidaktischer Ansätze widmete er sich über seine Dissertation und die Tätigkeit am Ernst-Schröder-Zentrum hinaus als mehrfacher Mitveranstalter der Tagungsreihe zur „Allgemeinen Mathematik“ und als Mitherausgeber der entsprechenden Reihe von Sammelbänden im Springer-Verlag.  Von 2013-2015 war er Sprecher des Arbeitskreises „Mathematik und Bildung“ der Gesellschaft für Didaktik der Mathematik. Seit 2009 lehrt und forscht Markus Helmerich im Bereich Didaktik der Mathematik an der Universität Siegen. Einen Schwerpunkt seiner aktuellen mathematikdidaktischen Arbeit stellen Untersuchungen zur Rolle von Experimenten, Vorstellungen und Reflexionen für handlungsorientiertes Lehren und Lernen im Mathematikunterricht aller Schulstufen und in der Mathematiklehrer(innen)ausbildung dar.

Posted in TEWI-Kolloquium | Leave a comment

Review: Virtual and Augmented Reality and its Applications [Slides][Video]

The review of the TEWI colloquia of Rositsa Radoeva, PhD from May 22, 2018 comprises the slides (below) and video here.

Slides

Abstract

The talk focuses on virtual and augmented reality technologies and examines various devices and technologies in the field of three-dimensional visualization and different applications of these technologies. The author presents a software for 3D interactive visualization, supporting disassembly and assembly processes of specialized equipment that have been developed by the VR-Team. Also, it will give a look at the development process of the presented software.

CV

Rositsa Radoeva is Assistant Professor at the Dept. of Computer Systems and Technologies of the Faculty of Mathematics and Informatics (FMI) at University of Veliko Tarnovo “St. Cyril and St. Methodius”. She obtained her PhD in Informatics at the Dept. of Computer Systems and Technologies, FMI at University of Veliko Tarnovo “St. Cyril and St. Methodius” in 2016. Since 2013 she is affiliated with the Dept. of Computer systems and technologies, FMI at University of Veliko Tarnovo “St. Cyril and St. Methodius”. Currently she is involved in research in the field of three-dimensional visualization, virtual and augmented reality. Since 2017, she is a part of the “VR-Team” – a team for the development of virtual and mixed reality software solutions.

Posted in TEWI-Kolloquium | Leave a comment

Review: Versatile Video Coding – Video Compression beyond HEVC: Coding Tools for SDR and 360° Video [Slides][Video]

The review of the TEWI colloquia of Dr.-Ing. Mathias Wien, RWTH Aachen University from May 14, 2018 comprises the slides (below) and video here.

Slides:

Abstract: In October 2017, ISO/IEC JCT1 SC29/WG11 MPEG and ITU-T SG16/Q6 VCEG have jointly published a Call for Proposals on Video Compression with Capability beyond HEVC and its current extensions. It is targeting at a new generation of video compression technology that has substantially higher compression capability than the existing HEVC standard. The responses to the call are evaluated in April 2018, forming the kick-off for a new standardization activity in the Joint Video Experts Team (JVET) of VCEG and MPEG, with a target of finalization by the end of the year 2020. Three categories of video are addressed: Standard dynamic range video (SDR), high dynamic range video (HDR), and 360° video. While SDR and HDR cover variants of conventional video to be displayed e.g. on a suitable TV screen at very high resolution (UHD), the 360° category targets at videos capturing a full-degree surround view of the scene. This enables an immersive video experience with the possibility to look around in the rendered scene, e.g. when viewed using a head-mounted display. This application triggers various technical challenges which need to be addressed in terms of compression, encoding, transport, and rendering. The talk summarizes the current state of the complete standardization project. Focussing on the SDR and 360° video categories, it highlights the development of selected coding tools compared to the state of the art. Representative examples of the new technological challenges as well as corresponding proposed solutions are presented.

Wien_webBio: Mathias Wien received the Diploma and Dr.-Ing. degrees from RWTH Aachen University, Germany, in 1997 and 2004, respectively. He currently works as a senior research scientist, head of administration, and lecturer, at the Institute of Communication Engineering of RWTH Aachen University, Germany. His research interests include image and video processing, immersive, space-frequency adaptive and scalable video compression, and robust video transmission. With respect to standardization, Mathias has contributed to ITU-T VCEG, ISO/IEC MPEG, as well as their collaborative teams, the Joint Video Experts Team, the Joint Collaborative Team on Video Coding (JCT-VC), and the Joint Video Team (JVT), in the standardization work towards the successor of HEVC, HEVC, and AVC, respectively. In standardization, he has co-chaired and coordinated several AdHoc groups as well as tool- and core experiments. He has authored and co-authored more than 60 conference and journal papers in the area of video coding,  as well as 18 granted patents. He has published the Springer textbook “High Efficiency Video Coding: Coding Tools and Specification”, which fully covers Version 1 of HEVC. Mathias is a member of the IEEE Signal Processing Society and the IEEE Circuits and Systems Society.

Links:

Posted in TEWI-Kolloquium | Leave a comment