Towards a Data-driven Identification of Teaching-Patterns

Friday, July 8, 2022 | 02:00 pm (CET) | Room: B01b.0.203, Lakeside Park

Jun. Prof. Dr. Bernhard Standl | Karlsruhe University of Education

Abstract: When it comes to integrating digital technologies into the classroom in higher education, many teachers face similar challenges. Nevertheless, it is difficult for teachers to share experiences because it is usually not possible to transfer successful teaching scenarios directly from one area to another, as subject-specific characteristics make it difficult to reuse them. To address this problem, instructional scenarios can be described as patterns that have been used previously in educational contexts. Patterns can capture proven teaching strategies and describe instructional scenarios in a consistent structure that can be reused. Because priorities for content, methods, and tools are different in each domain, a consensus-tested taxonomy was first developed with the goal of modeling a domain-independent database to collect digital instructional practices. In addition, this presentation will present preliminary insights into a data-driven approach to identifying effective instructional practices from interdisciplinary data as patterns. A web-based application will be developed for this that can both collect teaching/learning scenarios and individually extract scenarios from patterns for a learning platform.

Bio: Bernhard Standl is a tenure-track professor of Informatics Education at the Karlsruhe University of Education. His research focuses on modeling teaching concepts as pedagogical design patterns and on a data-driven identification of effective teaching-learning scenarios and their reuse in practice.

He received his Ph.D. in informatics education from the University of Vienna and where he was also active as a research assistant in educational projects and in a European Union’s funded project and research associate (post-doc) at the Vienna University of Technology. In addition, he worked as an informatics teacher at a high school in Vienna for more than 10 years. He gained international experience as a Fulbright Visiting Scholar at Missouri State University, Springfield, MO, USA.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für Towards a Data-driven Identification of Teaching-Patterns

Lakeside Talks #4 – Summer Edition


Welcome to the fourth edition of our Lakeside Talks! We are happy to announce, that the fourth Lakeside Talks will be an on-site event in our beautiful location in the Lakeside Park! Get together with like minded people, listen to great talks and socialize with industry peers.

This time, we have a special treat for everyone – three talks instead of two! And BBQ and craft beer!

We can happily announce the following three speakers:

  • Lorenz Schmoliner will talk about GitHub actions in action.
  • Sebastian Reschreiter will cover Hexagonal Architecture
  • Manuel Herold will convey to you why you should use Flutter

If you can’t make it on person, you can join our livestream over at YouTube.

See here for further details!

Posted in Veranstaltungen | Kommentare deaktiviert für Lakeside Talks #4 – Summer Edition

Tipping Points and Inference in Complex Systems

Thursday, July 7, 2022 | 02:00 pm (CET) | Room: B4.1.114, Lakeside Park B04b, level 1

Professor Dr. rer. nat. Marc Timme | Strategic Professor & Chair for Network Dynamics TU Dresden, Germany

Abstract: The dynamics of networks enables the function of a variety of systems we rely on every day, from gene regulation and metabolism in the cell to the distribution of electric power and communication of information. Understanding, steering and predicting the function of interacting nonlinear dynamical systems, in particular if they are externally driven out of equilibrium, relies on obtaining and evaluating suitable models, posing at least two major challenges. First, how can we extract key structural system features of networks if only time series data provide information about the dynamics of (some) units?  Second, how can we characterize nonlinear responses of nonlinear multi-dimensional systems externally driven by fluctuations, and consequently, predict tipping points at which normal operational states may be lost? Here we report recent progress on nonlinear response theory extended to predict tipping points and on model-free inference of network structural features from observed dynamics.

This is work with Jose Casadiego, Mor Nitzan, Hauke Haehne, Georg Boerner, Moritz Thuemler and others.

[1] Topical Review: Marc Timme & Jose Casadiego,  J. Phys. A 47:343001 (2014).

[2] Casadiego et al., Nature Comm. 8:2192 (2017).

[3] Nitzan et al., Science Adv.:e1600396 (2017).

[4] Haehne et al., Phys. Rev. Lett. 122:158301 (2019).

[5] Moritz Thuemler et al., submitted (2022).

Bio: Marc Timme studied Physics and Mathematics in Würzburg, Stony Brook (USA) and Göttingen. After work as a postdoctoral research at the Max Planck Institute for Flow Research and as a Research Scholar at Cornell University (USA), he was selected to head a broadly cross-disciplinary Max Planck Research Group on Network Dynamics at the Max Planck Institute for Dynamics and Self-Organization. Marc held  a Visiting Professorship at TU Darmstadt and was visiting faculty at ETH Zurich. He is now Strategic Professor and heads the Chair for Network Dynamics at the Cluster of Excellence Center for Advancing Electronics Dresden (cfaed) and the Institute for Theoretical Physics at TU Dresden. He is also Co-Chair of the Division of Socio-Economic Physics of the German Physical Society (DPG) and since 2018 Honorary Member of Lakeside Labs, Klagenfurt.

With collaborator teams he develops insights about collective nonlinear dynamics of complex systems and their applications in fields of energy and sustainability, mobility, as well as biological and bio-inspired information processing.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für Tipping Points and Inference in Complex Systems

The Computing Continuum: Beyond the Cloud Data Centers

Thursday, June 30th, 2022 | 10:00 (CET) | Room: S.2.69

Dr. Dragi Kimovski, MSc

Abstract: The advent of fog and edge computing has prompted predictions that they will take over the traditional cloud for information processing and knowledge extraction in Internet of Things (IoT) systems. Notwithstanding the fact that fog and edge computing have undoubtedly large potential, these predictions are probably oversimplified and wrongly portray the relations between cloud, fog and edge computing. 

Concretely, fog and edge computing have been introduced as an extension of the cloud services towards the data sources, thus forming the computing continuum. The computing continuum enables the creation of a new type of services, spanning across distributed infrastructures, supporting various IoT applications. These applications have a large spectrum of requirements, burdensome to meet with „distant“ cloud data centers. However, the introduction of the computing continuum raises multiple challenges for management, deployment and orchestration of complex distributed applications, such as: increased network heterogeneity, limited resource capacity of edge devices, fragmented storage management, high mobility of edge devices and limited support of native monolithic applications. These challenges primarily concern the complexity and the large diversity of the devices, managed by different entities (cloud providers, universities, private institutions), which range from single-board computers such as Raspberry Pis to powerful multi-processor servers.

Therefore, in this talk, we will discuss novel algorithms for low latency, scalable, and sustainable computing over heterogeneous resources for information processing and reasoning, thus enabling transparent integration of IoT applications. We will tackle the heterogeneity challenge of dynamically changing topologies of the computing infrastructure and present a novel concept for sustainable processing at scale.

CV: Dragi Kimovski is a  postdoctoral researcher at the Institute of Information Technology (ITEC), University of Klagenfurt, Austria. He earned his doctoral degree in 2013 from the Technical University in Sofia, Bulgaria. He was an assistant professor at  Ohrid University, N. Macedonia, and a senior researcher at the University of Innsbruck, Austria.

He coauthored more than 50 articles in international conferences and journals. His research interests include parallel and distributed computing and multi-objective optimization. He is a work-package leader and scientific coordinator in dozen Horizon 2020 projects (DataCloud, ENTICE, and ASPIDE) and participated in multiple national projects. 

Posted in TEWI-Kolloquium | Kommentare deaktiviert für The Computing Continuum: Beyond the Cloud Data Centers

East-west oriented photovoltaic power systems: model, benefits and technical evaluation

Thursday, June 23rd, 2022 | 14:00 (CET) | Room: Seminarraum Lakeside Labs B4.1.114

Priv.Doz. Tamer Khatib, MSc. PhD.

Abstract: East-west oriented photovoltaic power system is a new trend in orienting photovoltaic system. This lecture presents an evaluation of east–west oriented photovoltaic power system. A comparison between east–west oriented photovoltaic system and south oriented photovoltaic system in terms of cost of energy and technical requirement is conducted is presented in this lecture. In addition to that, the benefits of using east–west oriented photovoltaic system are discussed in this paper. By this lecture the following issues will be realized,

  • East–west oriented photovoltaic system requires less land area.
  • East–west oriented photovoltaic system requires less cost for mounting piles and steel structure, and less costs of the interfacing power substation
  • South oriented photovoltaic system produces more energy than east–west oriented photovoltaic system.
  • No significant difference between the costs of energy for both systems.
  • Grid interfacing east–west oriented PV system can provide smoother power injection to the grid with fewer harmonic and less reverse power.
  • South oriented photovoltaic system is preferred when high power injection is required.

Bio: Tamer is researcher in photovoltaic power systems. He holds a B.Sc. degree in electrical engineering from An-Najah National University (ANNU), as well as a M.Sc. degree and a Ph.D degree in electrical, electronic and systems engineering from National University of Malaysia (UKM). In addition he holds Habilitation degree in renewable and sustainable energy from Alpen Adria Universitat (AAU). Currently he is an Associate professor of renewable energy and Director of Scientific Centers at ANNU. In addition to that, he is the director of An-Najah Company for Consultancy and Technical Studies (sister research company of ANNU).

So far, he has 2 patents, 4 books and 140 research articles, while his current h-index is 40. He has supervised 4 Ph.D researches, 22 master researches and 60 bachelor researches.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für East-west oriented photovoltaic power systems: model, benefits and technical evaluation

IT does not stop

Wednesday, June 8th, 2022 | 17:00 (CET) | Room: Z.1.09

Univ.-Prof. i. R. Dipl-Ing. Dr. techn. Hannes Werthner

Abstract: We live in a “digital” world, the separation between physical and virtual makes (almost) no sense anymore. Here, the Corona pandemic has also acted as an accelerator/magnifier demonstrating that the future of our digital society is here with all its possibilities, but also shortcomings.
In his talk, Hannes Werthner will briefly reflect on the history of computer science, and then discuss the need for an interdisciplinary response to these shortcomings. Such an answer is the Digital Humanism, which looks at this interplay of technology and humankind, it analyzes, and, most importantly, tries to influence the complex interplay of technology and humankind, for a better society and life. In the second part he will discuss this approach, and show what was achieved since its first workshop in 2019, and what lies ahead.

Bio: Hannes Werthner is a retired Professor for E-Commerce at the Faculty of Informatics, TU Wien. Prior to joining TU Wien, he had several professorships at Austrian and international Universities. His research is in fields such as Decision Support Systems, E-Commerce and E-Tourism, Recommender Systems, and lately in Network Analysis and Text Mining.

Besides research and teaching he is active in starting new initiatives, such as the Vienna PhD School of Informatics and the i2c (Informatics Innovation Center). In the area of E-Tourism, the International Federation for IT and Tourism (IFITT) grants the “Hannes Werthner Tourism and Technology Lifetime Achievement Award” to outstanding academics and/or professionals in the field. He is one of the key persons of the Digital Humanism Initiative and the Vienna Manifesto on Digital Humanism (

Posted in TEWI-Kolloquium | Kommentare deaktiviert für IT does not stop

Learning from and for Heterogeneous and Ambiguous Data

Wednesday, June 1st, 2022 | 10:00 am (CET) | Room: V.1.07

Univ.-Prof. DI Dr. Peter M. Roth | Prof. at Vetmeduni Wien

Abstract: When talking about new developments in Machine Learning, we typically think about new algorithms, better optimization techniques, or optimized hyperparameters. However, one important aspect is often neglected: the quality and the structure of training data: measurement noise, label noise, and correct but ambiguous labels. In this talk, we address the latter problem, trying to deal with high intra-class and small inter-class variability in the data, following two different strategies. First, we consider the problem of metric learning, showing that by selecting/learning a better metric for a specific problem, better results can be obtained: using the same learning method and the same data. Second, focusing on neural networks, we analyze the influence of specific hyperparameters, namely the activation functions. For both directions, we show that the quality of the finally learned model is highly dependent on the data. To illustrate these aspects, we will further discuss a visualization technique, namely information planes, providing better insights into the current state of the learning system.

Bio: He has been a professor at Vetmeduni Vienna since January 2022. Research interests include Data Science and Machine Learning.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für Learning from and for Heterogeneous and Ambiguous Data

Roland-Mittermeir-Preis: Ausschreibung 2021

Ausschreibung 2021


Prämierung der besten Diplom- bzw. Masterarbeiten aller Studien der Technischen Fakultät an der Universität Klagenfurt

Der Förderverein Technische Fakultät an der Universität Klagenfurt schreibt die Prämierung der besten Diplom- bzw. Masterarbeiten aller Studien der Technischen Fakultät an der Universität Klagenfurt des laufenden Studienjahres aus.

Der Preis besteht aus einer Urkunde und einer Prämie in Höhe von

EUR 1.500,–

Die Jury ist ermächtigt den Preis gegebenenfalls zwischen mehreren Diplom- bzw. Masterarbeiten zu teilen. Antragsberechtigt sind Absolventinnen und Absolventen aller Studienrichtungen der Technischen Fakultät der Universität Klagenfurt, die Mitglied beim Förderverein sind (Beitrittserklärung hier!) und deren Diplom- bzw. Masterarbeit mit “Sehr Gut” beurteilt wurde. D.h. AbsolventInnen der folgenden Masterstudien: Informatik, Informationsmanagement, Informationstechnik, Technische Mathematik bzw. Lehramtsstudien mit einem Unterrichtsfach der TEWI zugeordnet (sofern die Diplom- bzw. Masterarbeit einem dieser Unterrichtsfächer zuzuordnen ist).

Es werden nur Diplom- bzw. Masterarbeiten bewertet, die im Zeitraum vom 1. Januar 2021 bis zum 31. Dezember 2021 fertiggestellt wurden. Als Fertigstellungstermin gilt der Tag der Ausstellung des Gutachtens/Beurteilung (lt. ZEUS). Die Einreichfrist für die Verleihung des Preises endet am 31. Juni 2022.

Der Antrag ist beim Geschäftsführer des Förderverein Technische Fakultät an der Universität Klagenfurt einzureichen und soll folgendes beinhalten:

  • Diplom- bzw. Masterarbeit (in elektronischer Form als PDF-Datei).
  • Gutachten des Betreuers der Masterarbeit.
  • Allfällige Software (oder Verweise auf existierende Software).
  • Eine kurze Zusammenfassung (max. eine Seite), die so geschrieben sein soll, dass sie auch für Nicht-ExpertInnen verständlich ist!

Beurteilungskriterien für die Zuerkennung des Preises sind strikt fachlicher qualitätsbezogener Natur. Sie umfassen die Aspekte:

  • wissenschaftlicher Gehalt,
  • Innovationsgehalt und Umsetzbarkeit,
  • Klarheit der Darstellung und Qualität der Ausführung.

Die Zuerkennung des Preises erfolgt durch eine Jury per Vorstandsbeschluß. Die Jury besteht i.a. aus:

  • dem Obmann des Förderverein Technische Fakultät an der Universität Klagenfurt (Vorsitz),
  • Vertretern der TEWI-Institute der Universität Klagenfurt und
  • Vertretern der institutionellen Mitglieder des Förderverein Technische Fakultät an der Universität Klagenfurt.

Der Geschäftsführer des Förderverein Technische Fakultät an der Universität Klagenfurt kann zu den Sitzungen der Jury als nichtstimmberechtigtes Mitglied beigezogen werden. Die Sitzungen der Jury sind geschlossene Sitzungen und die Entscheidungen der Jury sind endgültig. Der Rechtsweg ist ausgeschlossen.

Die Preisverleihung findet üblicherweise im Rahmen einer TEWI-Veranstaltung statt.

Posted in News | Kommentare deaktiviert für Roland-Mittermeir-Preis: Ausschreibung 2021

Machine Learning in Finance via Randomization

Friday, June 10th 2022 | 10:00 am (CET) | Room: N.2.35 |

Josef Teichmann | Prof. at ETH Zürich


Randomized Signature or random feature selection are two instances of machine learning, where randomly chosen structures appear to be highly expressive. We analyze several aspects of the theory behind it, show that these structures have several theoretically attractive properties and introduce two classes of examples from finance (joint works with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva, Martin Larsson, and Juan-Pablo Ortega).


Professor at ETH Zurich since 2009, Research Interests include Mathematical Finance, Machine Learning in Finance and Stochastic Analysis, Executive Secretary of the Bachelier Finance Society.

Posted in TEWI-Kolloquium | Kommentare deaktiviert für Machine Learning in Finance via Randomization

Studienpraktika E-Business

Praxiserfahrung mit Energie!

Praktikumsdauer 08/2022 bis 02/2023


  • Inhaltliche Wartung von Internetseiten (keine Programmierung!)
  • Umsetzung und Auswertung von Online-Kampagnen
  • Mitarbeit bei Newsletter-/Social-Media-Aktivitäten
  • Eigenständige Konzeption von kleinen bis mittleren Digitalprojekten
  • Zusammenarbeit/Koordination Webagenturen
  • Auswertung von Kennzahlen und Berichterstellung
  • Qualitätssicherungsmaßnahmen
Dieses Bild hat ein leeres Alt-Attribut. Der Dateiname ist grafik-4.png

Interessiert? Weitere Informationen und zur Bewerbung gehts hier!

Posted in Stellenausschreibungen | Kommentare deaktiviert für Studienpraktika E-Business